920 resultados para Dental consulting-room
Resumo:
A new method for modeling-frequency-dependent boundaries in finite-difference time-domain (FDTD) and Kirchhoff variable digital waveguide mesh (K-DWM) room acoustics simulations is presented. The proposed approach allows the direct incorporation of a digital impedance filter (DIF) in the Multidimensional (2D or 3D) FDTD boundary model of a locally reacting surface. An explicit boundary update equation is obtained by carefully constructing a Suitable recursive formulation. The method is analyzed in terms of pressure wave reflectance for different wall impedance filters and angles of incidence. Results obtained from numerical experiments confirm the high accuracy of the proposed digital impedance filter boundary model, the reflectance of which matches locally reacting surface (LRS) theory closely. Furthermore a numerical boundary analysis (NBA) formula is provided as a technique for an analytic evaluation of the numerical reflectance of the proposed digital impedance filter boundary formulation.
Resumo:
In this paper, a complete method for finite-difference time-domain modeling of rooms in 2-D using compact explicit schemes is presented. A family of interpolated schemes using a rectilinear, nonstaggered grid is reviewed, and the most accurate and isotropic schemes are identified. Frequency-dependent boundaries are modeled using a digital impedance filter formulation that is consistent with locally reacting surface theory. A structurally stable and efficient boundary formulation is constructed by carefully combining the boundary condition with the interpolated scheme. An analytic prediction formula for the effective numerical reflectance is given, and a stability proof provided. The results indicate that the identified accurate and isotropic schemes are also very accurate in terms of numerical boundary reflectance, and outperform directly related methods such as Yee's scheme and the standard digital waveguide mesh. In addition, one particular scheme-referred to here as the interpolated wideband scheme-is suggested as the best scheme for most applications.
Resumo:
This paper presents methods for simulating room acoustics using the finite-difference time-domain (FDTD) technique, focusing on boundary and medium modeling. A family of nonstaggered 3-D compact explicit FDTD schemes is analyzed in terms of stability, accuracy, and computational efficiency, and the most accurate and isotropic schemes based on a rectilinear grid are identified. A frequency-dependent boundary model that is consistent with locally reacting surface theory is also presented, in which the wall impedance is represented with a digital filter. For boundaries, accuracy in numerical reflection is analyzed and a stability proof is provided. The results indicate that the proposed 3-D interpolated wideband and isotropic schemes outperform directly related techniques based on Yee's staggered grid and standard digital waveguide mesh, and that the boundary formulations generally have properties that are similar to that of the basic scheme used.
Resumo:
In this paper, a method for modeling diffusive boundaries in finite difference time domain (FDTD) room acoustics simulations with the use of impedance filters is presented. The proposed technique is based on the concept of phase grating diffusers, and realized by designing boundary impedance filters from normal-incidence reflection filters with added delay. These added delays, that correspond to the diffuser well depths, are varied across the boundary surface, and implemented using Thiran allpass filters. The proposed method for simulating sound scattering is suitable for modeling high frequency diffusion caused by small variations in surface roughness and, more generally, diffusers characterized by narrow wells with infinitely thin separators. This concept is also applicable to other wave-based modeling techniques. The approach is validated by comparing numerical results for Schroeder diffusers to measured data. In addition, it is proposed that irregular surfaces are modeled by shaping them with Brownian noise, giving good control over the sound scattering properties of the simulated boundary through two parameters, namely the spectral density exponent and the maximum well depth.
Resumo:
Computer simulations of (i) a [C(12)mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.
Resumo:
Introduction: Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
Methods: Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca2+ microfluorimetry.
Results: Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca2+ microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca2+]i) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
Conclusions: Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.
Resumo:
Measuring neuropeptides in biological tissues by radioimmunoassay requires efficient extraction that maintains their immunoreactivity. Many different methods for extraction have been described, but there is little information on optimal extraction methods for individual neuropeptides from human dental pulp tissue. The aim was therefore to identify an effective extraction procedure for three pulpal neuropeptides: substance P. neurokinin A and calcitonin gene-related peptide. Tissue was obtained from 20 pulps taken from teeth freshly extracted for orthodontic reasons. The pulp samples were divided into four equal groups and different extraction methods were used for each group. Boiling whole pulp in acetic acid gave the highest overall yield and, in addition, offered an easy and rapid means of pulp tissue processing. The use of protease inhibitors did not increase the recovery of the immunoreactive neuropeptides but did provide the best combination of maximal recoveries and minimal variability. These results should be useful for planning the extraction of these neuropeptides from human pulp tissue in future studies. (C) 1999 Elsevier Science Ltd. All rights reserved.