963 resultados para Definitive Hematopoiesis
Resumo:
Based on the AFM-bending experiments, a molecular dynamics (MD) bending simulation model is established which could accurately account for the full spectrum of the mechanical properties of NWs in a double clamped beam configuration, ranging from elasticity to plasticity and failure. It is found that, loading rate exerts significant influence to the mechanical behaviours of nanowires (NWs). Specifically, a loading rate lower than 10 m/s is found reasonable for a homogonous bending deformation. Both loading rate and potential between the tip and the NW are found to play an important role in the adhesive phenomenon. The force versus displacement (F-d) curve from MD simulation is highly consistent in shapes with that from experiments. Symmetrical F-d curves during loading and unloading processes are observed, which reveal the linear-elastic and non-elastic bending deformation of NWs. The typical bending induced tensile-compressive features are observed. Meanwhile, the simulation results are excellently fitted by the classical Euler-Bernoulli beam theory with axial effect. It is concluded that, axial tensile force becomes crucial in bending deformation when the beam size is down to nanoscale for double clamped NWs. In addition, we find shorter NWs will have an earlier yielding and a larger yielding force. Mechanical properties (Young’s modulus & yield strength) obtained from both bending and tensile deformations are found comparable with each other. Specifically, the modulus is essentially similar under these two loading methods, while the yield strength during bending is observed larger than that during tension.
Resumo:
Crisis holds the potential for profound change in organizations and industries. The past 50 years of crisis management highlight key shifts in crisis practice, creating opportunities for multiple theories and research tracks. Defining crises such as Tylenol, Exxon Valdez, and September 11 terrorist attacks have influenced or challenged the principles of best practice of crisis communication in public relations. This study traces the development of crisis process and practice by identifying shifts in crisis research and models and mapping these against key management theories and practices. The findings define three crisis domains: crisis planning, building and testing predictive models, and mapping and measuring external environmental influences. These crisis domains mirror but lag the evolution of management theory, suggesting challenges for researchers to reshape the research agenda to close the gap and lead the next stage of development in the field of crisis communication for effective organizational outcomes.
Resumo:
For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).
Resumo:
Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm-1 are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4•xH2O.
Resumo:
A scaling analysis for the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the boundary layer flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. The analysis reveals that, if the period of temperature growth on the wall is sufficiently long, the boundary layer reaches a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently, but after the wall temperature growth is completed, the boundary layer develops as though the startup had been instantaneous. The steady state values of the boundary layer for both cases are ultimately the same.
Resumo:
Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.
Resumo:
Precise protein quantification is essential in clinical dietetics, particularly in the management of renal, burn and malnourished patients. The EP-10 was developed to expedite the estimation of dietary protein for nutritional assessment and recommendation. The main objective of this study was to compare the validity and efficacy of the EP-10 with the American Dietetic Association’s “Exchange List for Meal Planning” (ADA-7g) in quantifying dietary protein intake, against computerised nutrient analysis (CNA). Protein intake of 197 food records kept by healthy adult subjects in Singapore was determined thrice using three different methods – (1) EP-10, (2) ADA-7g and (3) CNA using SERVE program (Version 4.0). Assessments using the EP-10 and ADA-7g were performed by two assessors in a blind crossover manner while a third assessor performed the CNA. All assessors were blind to each other’s results. Time taken to assess a subsample (n=165) using the EP-10 and ADA-7g was also recorded. Mean difference in protein intake quantification when compared to the CNA was statistically non-significant for the EP-10 (1.4 ± 16.3 g, P = .239) and statistically significant for the ADA-7g (-2.2 ± 15.6 g, P = .046). Both the EP-10 and ADA-7g had clinically acceptable agreement with the CNA as determined via Bland-Altman plots, although it was found that EP-10 had a tendency to overestimate with protein intakes above 150 g. The EP-10 required significantly less time for protein intake quantification than the ADA-7g (mean time of 65 ± 36 seconds vs. 111 ± 40 seconds, P < .001). The EP-10 and ADA-7g are valid clinical tools for protein intake quantification in an Asian context, with EP-10 being more time efficient. However, a dietician’s discretion is needed when the EP-10 is used on protein intakes above 150g.
Resumo:
Background: In vitro investigations have demonstrated the importance of the ribcage in stabilising the thoracic spine. Surgical alterations of the ribcage may change load-sharing patterns in the thoracic spine. Computer models are used in this study to explore the effect of surgical disruption of the rib-vertebrae connections on ligament load-sharing in the thoracic spine. Methods: A finite element model of a T7-8 motion segment, including the T8 rib, was developed using CT-derived spinal anatomy for the Visible Woman. Both the intact motion segment and the motion segment with four successive stages of destabilization (discectomy and removal of right costovertebral joint, right costotransverse joint and left costovertebral joint) were analysed for a 2000Nmm moment in flexion/extension, lateral bending and axial rotation. Joint rotational moments were compared with existing in vitro data and a detailed investigation of the load sharing between the posterior ligaments carried out. Findings: The simulated motion segment demonstrated acceptable agreement with in vitro data at all stages of destabilization. Under lateral bending and axial rotation, the costovertebral joints were of critical importance in resisting applied moments. In comparison to the intact joint, anterior destabilization increases the total moment contributed by the posterior ligaments. Interpretation: Surgical removal of the costovertebral joints may lead to excessive rotational motion in a spinal joint, increasing the risk of overload and damage to the remaining ligaments. The findings of this study are particularly relevant for surgical procedures involving rib head resection, such as some techniques for scoliosis deformity correction.
Resumo:
Nowadays, business process management is an important approach for managing organizations from an operational perspective. As a consequence, it is common to see organizations develop collections of hundreds or even thousands of business process models. Such large collections of process models bring new challenges and provide new opportunities, as the knowledge that they encapsulate requires to be properly managed. Therefore, a variety of techniques for managing large collections of business process models is being developed. The goal of this paper is to provide an overview of the management techniques that currently exist, as well as the open research challenges that they pose.
Resumo:
This paper examines discussions of Generation Y within higher education discourse, arguing the sector’s use of the term to describe students is misguided for three reasons. First, portraying students as belonging to Generation Y homogenises people undertaking higher education as young, middle-class and technologically literate. Second, speaking of Generation Y students allows constructivism to be reinvented as a ‘new’ learning and teaching philosophy. Third, the Generation Y university student has become a central figure in concerns about technology’s role in learning and teaching. While the notion of the ‘Generation Y student’ creates the illusion that higher education institutions understand their constituents, ultimately, it is of little value in explaining young adults’ educational experiences.
Resumo:
Ultrafine particles (UFPs, <100 nm) are produced in large quantities by vehicular combustion and are implicated in causing several adverse human health effects. Recent work has suggested that a large proportion of daily UFP exposure may occur during commuting. However, the determinants, variability and transport mode-dependence of such exposure are not well-understood. The aim of this review was to address these knowledge gaps by distilling the results of ‘in-transit’ UFP exposure studies performed to-date, including studies of health effects. We identified 47 exposure studies performed across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. These encompassed approximately 3000 individual trips where UFP concentrations were measured. After weighting mean UFP concentrations by the number of trips in which they were collected, we found overall mean UFP concentrations of 3.4, 4.2, 4.5, 4.7, 4.9 and 5.7 × 10^4 particles cm^-3 for the bicycle, bus, automobile, rail, walking and ferry modes, respectively. The mean concentration inside automobiles travelling through tunnels was 3.0 × 10^5 particles cm^-3. While the mean concentrations were indicative of general trends, we found that the determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust treatment technologies, cabin ventilation, filtration, deposition, UFP penetration) exhibited marked variability and mode-dependence, such that it is not necessarily appropriate to rank modes in order of exposure without detailed consideration of these factors. Ten in-transit health effects studies have been conducted and their results indicate that UFP exposure during commuting can elicit acute effects in both healthy and health-compromised individuals. We suggest that future work should focus on further defining the contribution of in-transit UFP exposure to total UFP exposure, exploring its specific health effects and investigating exposures in the developing world. Keywords: air pollution; transport modes; acute health effects; travel; public transport
Resumo:
Information mismatch and overload are two fundamental issues influencing the effectiveness of information filtering systems. Even though both term-based and pattern-based approaches have been proposed to address the issues, neither of these approaches alone can provide a satisfactory decision for determining the relevant information. This paper presents a novel two-stage decision model for solving the issues. The first stage is a novel rough analysis model to address the overload problem. The second stage is a pattern taxonomy mining model to address the mismatch problem. The experimental results on RCV1 and TREC filtering topics show that the proposed model significantly outperforms the state-of-the-art filtering systems.
Resumo:
In the last few years we have observed a proliferation of approaches for clustering XML docu- ments and schemas based on their structure and content. The presence of such a huge amount of approaches is due to the different applications requiring the XML data to be clustered. These applications need data in the form of similar contents, tags, paths, structures and semantics. In this paper, we first outline the application contexts in which clustering is useful, then we survey approaches so far proposed relying on the abstract representation of data (instances or schema), on the identified similarity measure, and on the clustering algorithm. This presentation leads to draw a taxonomy in which the current approaches can be classified and compared. We aim at introducing an integrated view that is useful when comparing XML data clustering approaches, when developing a new clustering algorithm, and when implementing an XML clustering compo- nent. Finally, the paper moves into the description of future trends and research issues that still need to be faced.
Resumo:
Backgrounds Whether suicide in China has significant seasonal variations is unclear. The aim of this study is to examine the seasonality of suicide in Shandong China and to assess the associations of suicide seasonality with gender, residence, age and methods of suicide. Methods Three types of tests (Chi-square, Edwards' T and Roger's Log method) were used to detect the seasonality of the suicide data extracted from the official mortality data of Shandong Disease Surveillance Point (DSP) system. Peak/low ratios (PLRs) and 95% confidence intervals (CIs) were calculated to indicate the magnitude of seasonality. Results A statistically significant seasonality with a single peak in suicide rates in spring and early summer, and a dip in winter was observed, which remained relatively consistent over years. Regardless of gender, suicide seasonality was more pronounced in rural areas, younger age groups and for non-violent methods, in particular, self-poisoning by pesticide. Conclusions There are statistically significant seasonal variations of completed suicide for both men and women in Shandong, China. Differences exist between residence (urban/rural), age groups and suicide methods. Results appear to support a sociological explanation of suicide seasonality.
Resumo:
In this paper, we describe an analysis for data collected on a three-dimensional spatial lattice with treatments applied at the horizontal lattice points. Spatial correlation is accounted for using a conditional autoregressive model. Observations are defined as neighbours only if they are at the same depth. This allows the corresponding variance components to vary by depth. We use the Markov chain Monte Carlo method with block updating, together with Krylov subspace methods, for efficient estimation of the model. The method is applicable to both regular and irregular horizontal lattices and hence to data collected at any set of horizontal sites for a set of depths or heights, for example, water column or soil profile data. The model for the three-dimensional data is applied to agricultural trial data for five separate days taken roughly six months apart in order to determine possible relationships over time. The purpose of the trial is to determine a form of cropping that leads to less moist soils in the root zone and beyond.We estimate moisture for each date, depth and treatment accounting for spatial correlation and determine relationships of these and other parameters over time.