928 resultados para Decimal numbers and fractional numbers
Resumo:
The multiplier ideals of an ideal in a regular local ring form a family of ideals parametrized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript we shall give an explicit formula for the jumping numbers of a simple complete ideal in a two dimensional regular local ring. In particular, we obtain a formula for the jumping numbers of an analytically irreducible plane curve. We then show that the jumping numbers determine the equisingularity class of the curve.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
The flow over a missile-shaped configuration is investigated by means of Schlieren visualization in short-duration facility producing free stream Mach numbers of 5.75 and 8. This visualization technique is demonstrated with a 41 degrees full apex angle blunt cone missile-shaped body mounted with and without cavity. Experiments are carried out with air as the test gas to visualize the flow field. The experimental results show a strong intensity variation in the deflection of light in a flow field, due to the flow compressibility. Shock stand-off distance measured with the Schlieren method is in good agreement with theory and computational fluid dynamic study for both the configurations. Magnitude of the shock oscillation for a cavity model may be greater than the case of a model without cavity. The picture of visualization shows that there is an outgoing and incoming flow closer to the cavity. Cavity flow oscillation was found to subside to steady flow with a decrease in the free stream Mach number.
Resumo:
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.
Resumo:
A study of transpiration cooling of blunt bodies such as a hemicylinder is made by solving Navier-Stokes equations. An upwind, implicit time-marching code is developed for this purpose. The study is conducted for both perfect-gas and real-gas (chemical equilibrium) flows. Investigations are carried out for a special wall condition that is referred to as no heat flow into the wall condition. The effects of air injection on wall temperature are analyzed. Analyses are carried out for Mach numbers ranging between 6-10 and Reynolds numbers ranging between 10(6)-10(7). Studies are made for spatially constant as well as spatially varying mass injection rate distributions, White cold air injection reduces the wall temperature substantially, transpiration cooling is relatively less effective when the gas is in chemical equilibrium.
Resumo:
We build on the formulation developed in S. Sridhar and N. K. Singh J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients alpha(il) and eta(iml) are derived. We prove that when the velocity field is nonhelical, the transport coefficient alpha(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X-3 and time tau; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Radler, M. Rheinhardt, and P. J. Kapyla Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor eta(ij) (tau). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.
Resumo:
Transpiration cooling over a flat plate at hypersonic Mach numbers is analyzed using Navier-Stokes equations, without the assumption of an isothermal wall with a prescribed wall temperature. A new criterion is proposed for determining a relevant range of blowing rates, which is useful in the parametric analysis. The wall temperature is found to decrease with the increasing blowing rate, but this effect is not uniform along the plate. The effect is more pronounced away from the leading edge. The relative change in the wall temperature is affected stronger by blowing at high Reynolds numbers. (AIAA)
Resumo:
A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120degrees apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.
Resumo:
The flow in a square cavity is studied by solving the full Navier–Stokes and energy equations numerically, employing finite-difference techniques. Solutions are obtained over a wide range of Reynolds numbers from 0 to 50000. The solutions show that only at very high Reynolds numbers (Re [gt-or-equal, slanted] 30000) does the flow in the cavity completely correspond to that assumed by Batchelor's model for separated flows. The flow and thermal fields at such high Reynolds numbers clearly exhibit a boundary-layer character. For the first time, it is demonstrated that the downstream secondary eddy grows and decays in a manner similar to the upstream one. The upstream and downstream secondary eddies remain completely viscous throughout the range of Reynolds numbers of their existence. It is suggested that the behaviour of the secondary eddies may be characteristic of internal separated flows.
Resumo:
This paper reports on our study of the edge of the 2/5 fractional quantum Hall state, which is more complicated than the edge of the 1/3 state because of the presence of edge sectors corresponding to different partitions of composite fermions in the lowest two Lambda levels. The addition of an electron at the edge is a nonperturbative process and it is not a priori obvious in what manner the added electron distributes itself over these sectors. We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in the [N(1), N(2)] sector, where N(1) and N(2) are the numbers of composite fermions in the lowest two Lambda levels, the resulting state lies in either [N(1) + 1, N(2)] or [N(1), N(2) + 1] sectors; adding an electron at the edge is thus equivalent to adding a composite fermion at the edge. The coupling to other sectors of the form [N(1) + 1 + k, N(2) - k], k integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with the two-boson model of the 2/5 edge. We compute the spectral weights and find that while the individual spectral weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the 2/5 edge.
Resumo:
Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.