950 resultados para DORSAL PERIAQUEDUCTAL GRAY MATTER
Resumo:
We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam.
Resumo:
The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.
Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.
Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.
When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.
The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.
Resumo:
Part I:
The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.
Part II.
The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.
Computer controlled manipulation of matter at the nanometre scale with the scanning probe microscope
Resumo:
This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.
The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.
The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.
Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.
Resumo:
Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America
Resumo:
An ordered gray-scale erosion is suggested according to the definition of hit-miss transform. Instead of using three operations, two images, and two structuring elements, the developed operation requires only one operation and one structuring element, but with three gray-scale levels. Therefore, a union of the ordered gray-scale erosions with different structuring elements can constitute a simple image algebra to program any combined image processing function. An optical parallel ordered gray-scale erosion processor is developed based on the incoherent correlation in a single channel. Experimental results are also given for an edge detection and a pattern recognition. (C) 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00306-7].
Resumo:
There is at the moment no direct method of determining the organic matter content of natural waters. In 1940/41 8 different water bodies in central Russia were studied and their organic matter identified. The author concludes that there is currently no easy method to determine organic matter in water. A number methods need to be applied.
Resumo:
Os gêneros de peixes fósseis Oshunia e Placidichthys são holósteos pertencentes à Ordem Ionoscopiformes e provenientes do Cretáceo Inferior do Brasil, das bacias do Araripe e de Tucano. No clado Ionoscopiformes sensu Grande & Bemis (1998) estão incluídas as famílias Ionoscopidae e Ophiopsidae, todavia as relações internas deste grupo ainda são duvidosas. Oshunia e Placidichthys fazem parte das famílias Ionoscopidae e Ophiopsidae, respectivamente, sendo o gênero Oshunia considerado como mono-específico (cf., O. brevis), enquanto que Placidichthys apresenta duas espécies nominais (cf., P. bidorsalis e P. tucanensis). Em função destas espécies terem sido descritas a partir de poucos espécimes, ainda existiam várias lacunas no conhecimento em relação as mesmas, como, por exemplo, a possibilidade da existência de outras espécies no gênero Oshunia e a falta de informações anatômicas, especialmente do crânio, da região occipital, dos ossos da face e da nadadeira caudal das espécies de Placidichthys. Outro ponto em aberto na literatura era a posição filogenética dos dois gêneros. Frente a estas questões, o objetivo da presente dissertação foi realizar uma revisão anatômica dos gêneros Oshunia e Placidichthys, a fim de ampliar o conhecimento anatômico e taxonômico acerca dos mesmos, além realizar uma análise filogenética da Ordem Ionoscopiformes, baseada em matrizes de caracteres existentes na literatura, para se obter um melhor posicionamento dessas espécies brasileiras. Em função da facilidade de acesso a material mexicano, também foram incluídos nesta revisão os gêneros Teoichthys e Tuetzalichthys provenientes do Cretáceo da Formação Tlayúa, estes também peixes fósseis holósteos pertencentes à Ordem Ionoscopiformes. Do ponto de vista taxonômico, não foi possível confirmar a existência de novas espécies para o gênero Oshunia, entretanto ficou clara a presença de uma nova espécie pertencente ao gênero mexicano Teoichthys. A presente revisão proporcionou uma série de novas informações sobre a anatomia destas espécies de Ionoscopiformes, tais como a descrição dos ossos circumorbitais e do teto craniano e uma reinterpretação acerca da nadadeira dorsal de Placidichthys bidorsalis, ou ainda sobre a forma do rostral de Teoichthys kallistos. Da mesma maneira, esta revisão também ofereceu novos dados para a construção de uma nova hipótese filogenética para Ionoscopiformes, a qual se mostrou consideravelmente distinta das hipóteses filogenéticas anteriores (cf., relações internas de Ionoscopidae e o posicionamento do gênero Teoichthys). O baixo suporte para grande parte dos clados torna evidente a fragilidade das hipóteses de relacionamento interno do clado Ionoscopiformes, bem como a necessidade de uma revisão mais aprofundada das outras espécies deste grupo e dos caracteres a serem utilizados em futuras análises filogenéticas.
Resumo:
[EN] This study analyzes the relationship between board size and economic-financial performance in a sample of European firms that constitute the EUROSTOXX50 Index. Based on previous literature, resource dependency and agency theories, and considering regulation developed by the OECD and European Union on the normative of corporate governance for each country in the sample, the authors propose the hypotheses of both positive linear and quadratic relationships between the researched parameters. Using ROA as a benchmark of financial performance and the number of members of the board as measurement of the board size, two OLS estimations are performed. To confirm the robustness of the results the empirical study is tested with two other similar financial ratios, ROE and Tobin s Q. Due to the absence of significant results, an additional factor, firm size, is employed in order to check if it affects firm performance. Delving further into the nature of this relationship, it is revealed that there exists a strong and negative relation between firm size and financial performance. Consequently, it can be asseverated that the generic recommendation one size fits all cannot be applied in this case; which conforms to the Recommendations of the European Union that dissuade using generic models for all countries.
Resumo:
120 p.
Resumo:
134 p.
Resumo:
In this work we investigate if a small fraction of quarks and gluons, which escaped hadronization and survived as a uniformly spread perfect fluid, can play the role of both dark matter and dark energy. This fluid, as developed in [1], is characterized by two main parameters: beta, related to the amount of quarks and gluons which act as dark matter; and gamma, acting as the cosmological constant. We explore the feasibility of this model at cosmological scales using data from type Ia Supernovae (SNeIa), Long Gamma-Ray Bursts (LGRB) and direct observational Hubble data. We find that: (i) in general, beta cannot be constrained by SNeIa data nor by LGRB or H(z) data; (ii) gamma can be constrained quite well by all three data sets, contributing with approximate to 78% to the energy matter content; (iii) when a strong prior on (only) baryonic matter is assumed, the two parameters of the model are constrained successfully. (C) 2014 The Authors. Published by Elsevier B.V.