863 resultados para Cyclic hardening and softening
Resumo:
Doppler ultrasonography is a new technology that has been study by researchers to improve the physiologic and pathologic knowledge about reproduction. This technology is based on Doppler-shifts frequencies or ultrasonic, these frequencies can be increase or decrease according to the movements of the red cells in the vessel. Color Doppler and power Doppler are the two possibilities to use the Doppler ultrasonography. Color Doppler is based in more the one color that show the direction of the blood f low and power Doppler is based in one color that change according of the flow intensity. Doppler ultrasonography can be demonstrated with the spectral mode to verify blood flow in large vessels, because of this, it is not use in equine reproduction. Studies in equine reproduction have been doing to verify uterus blood flow in cyclic mares and to observe the vascular perfusion in mares with cists, uterine vascular perfusion post breeding and verify the affects of drugs to decrease the uterus fluid in mares with problems in uterus perfusion. The ovarian irrigation during the estrus cycle was analyze with the measurement of the principal hormones during the estrus cycle in mares, the integrity of the corpus luteus, the irrigation of the future dominant follicle and the consequences in the ovarian irrigation after luteolyse induction also were study. Nevertheless, more than the knowledge that existed about Doppler ultrasonography, new studies have been doing to improve the forms to use Doppler ultrasonography in equine reproduction
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
When materials for application in aircraft structural components are studied, it must be considered that they will be submitted to cyclic loading, and this is an important parameter to design the study in fatigue life of the materials. Whereas, for example, a landing gear operation, the study of fatigue life and corrosion in the materials used in it is essential, especially when you want to use new techniques for surface treatments. The objective is to study the influence of surface treatment of immersion ion implantation nitrogen plasma, in axial fatigue of Stainless steel 15-5 PH in 39-42 HRC condition. Stainless steel 15-5 PH was tested in axial fatigue and corrosion in salt spray. It was also performed microindentation tests, optical microscopy for microstructural analysis and scanning electron microscopy for fractographic analysis. It was observed that the 3IP had no effect on the thickness of the material and not the hardness of it, and still provided a significant increase in fatigue life of the material
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The monomeric compound bis[(carbonyl)(quinoline-2-thiolate-N,S)]iron(II) was synthesized and studied by IR and Mossbauer spectroscopy, cyclic voltammetry and X-ray diffraction. The molecule has two terminal carbonyl groups and two quinoline-2-thiolate anions coordinated as N,S-donor chelates, and the iron atom shows an octahedral coordination geometry.
Resumo:
The electrochemical behaviour of N-R-4-cyanopyridinium (4-rcp) (R = methyl, decyl, dodecyl, or benzyl) coordinated to pentaammineruthenium(II) in CF3COOH-CF3COONa (μ = 0.1 M, pH 3) aqueous medium was studied by means of cyclic voltammetry and constant potential electrolysis. The electrochemical oxidation of the metallic centre (Ep ca 0.51 V/SCE) can be described as a reversible monoelectronic charge-transfer followed by an irreversible chemical reaction, which is the hydrolysis of N-R-4-cyanopyridiniumpentaammineruthenium(III) (A) to N-R-4-carboxamidepyridiniumruthenium (III) (B) with the kf1 values depending on the type of alkyl group. The E 1 2 values are not significantly influenced by the nature of the alkyl group. At more negative potential (ca -0.5 V/SCE), B undergoes an electrochemical reduction followed by an aquation reaction to produce aquopentaammineruthenium(II) and free N-R-4-carboxamidepyridinium. The amide was identified by comparison of its cyclic voltammogram and UV-vis spectrum with that of a sample prepared by chemical reaction. The results were also discussed by comparison with other systems, and show that nitrile-amide conversion catalysed by pentaammineruthenium(II) complexes is possible. © 1994.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...