979 resultados para Confocal Scanning Laser Microscopy
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
Sixty-four volcanic chists, sandstones and tephras between 5.95 and 618.19 meters below sea floor (mbsf) in the Cape Roberts Project cores 2 and 2A cores (CRP-2/2A) were examined for Cenozoic and Mesozoic volcanic components, using optical and Scanning Electron Microscopy. Minerals and glass shards in a selection of samples were analysed by electron microprobe fined with an EDAX detector. Laser-Ablation ICP-Mass-Spectrometry (ICP-MS) was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to pin-point the onset of McMurdo Volcanic Group (MVG) activity in the stratigraphic column. Pumices in tephra layers of peralkaline phonolite composition in Unit 7.2 -between 108 and 114 mbsf - were also analysed for trace elements by ICP-MS. This tephra unit is not reworked and its isotopic age (21.44 ± 0.05 Ma) is the age of deposition. The height of the eruptive column responsible for the deposition of the tephra was probably less than 8 km; the source was local, probably within 30 km from the drill site. Phonolite of unit 7.2 of CRP-2/2A has no direct petrogenetic relation with the peralkaline trachyte in the tephra-enriched layer of CRP-1 at 116.55 mbsf. Volcanic clasts and sand grains (glass shards, aegirine-augite, anorthoclase) related to Cenozoic activity of MVG were observed only starting from Unit 9.8, where they are dated at 24.22 ± 0.06 Ma at c. 280 mbsf. In this unit the lowest- occurring basaltic glass shard is found at 297.54 mbsf. Sampled McMurdo volcanics are generally vesicular and vary in composition from alkali basalt to trachyte and peralkaline phonolite. By contrast, below 320 mbsf, aphyric or slightly-porphyritic volcanic clasts become more abundant but they are all non-vesiculated, pigeconite and ilmenite-bearing basalts and dolerite of tholeiitic affinity. These rocks are considered to be related to lava flows and associated intrusions of Jurassic age (Kirkpatrick basalts and Ferrar dolerite). As in CRP-1, McMurdo volcanics appear to derive from a variety of lithologics. Besides glaciers, a dominant role of wind transportation from exposed volcanic rocks may be inferred from the contemporary occurrence of glass shards of different compositions at depths above 297.54 mbsf. These data confirm that the onset of magmatic activity in southern Victoria Land is considerably delayed (by about 24 Ma) with respect to northern Victoria Land.
Resumo:
Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.
Resumo:
Mineralogy and geochemistry of sulfide-bearing rocks and ores discovered within the Menez Gwen Hydrothermal Field are studied. Samples were taken during Cruise 49 of R/V Akademik Mstislav Keldysh of the p.p. Shirshov Institute of Oceanology. Mineral composition of rocks and ores were studied by traditional methods of optical microscopy, scanning electron microscopy (CAMSCAN), and microprobe analysis (EPMA SX-50). Contents of trace elements were determined by laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS). Zn-Cu ore comprises zonal sulfide chimney intergrowths. Numerous Se-rich copper ore fragments occur in volcanomictic layered gritstones and/or barite slabs. Mineral composition, zonality and association of trace elements in ore are typical of black smokers formed at the basalt base near the Azores Triple Junction in the MAR. Obtained results make it possible to reconstruct formation history of the Menez Gwen Hydrothermal Field into the high-temperature (Cu-Se association in ore clasts), medium-temperature (Zn-Cu-As association in ore), and recent (Ba-SiO2 association) stages.
Resumo:
The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.
Resumo:
Conductive submicronic coatings of carbon black (CB)/silica composites have been prepared by a sol-gel process and deposited by spray-coating on glazed porcelain tiles. Stable CB dispersions with surfactant were rheologically characterized to determine the optimum CB-surfactant ratio. The composites were analyzed by Differential Thermal and Thermogravimetric Analysis and Hg-Porosimetry. Thin coatings were thermally treated in the temperature range of 300-500degC in air atmosphere. The microstructure of the coatings was determined by scanning electron microscopy and the structure evaluated by confocal Raman spectroscopy. The electrical characterization of the samples was carried out using dc intensity-voltage curves. The coatings exhibit good adhesion, high density and homogeneous distribution of the conductive filler (CB) in the insulate matrix (silica) that protects against the thermal degradation of the CB nanoparticles during the sintering process. As consequence, the composite coatings show the lowest resistivity values for CB-based films reported in the literature, with values of ~7times10 -5Omegam.
Resumo:
In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.
Resumo:
Superoxide-mediated clastogenesis is characteristic for various chronic inflammatory diseases with autoimmune reactions and probably plays a role in radiation-induced clastogenesis and in the congenital breakage syndromes. It is consistently prevented by exogenous superoxide dismutase (SOD), but not by heat-inactivated SOD, indicating that the anticlastogenic effect is related to the catalytic function of the enzyme. Increased superoxide production by activated monocytes/macrophages is followed by release of more long-lived metabolites, so-called clastogenic factors, which contain lipid peroxidation products, unusual nucleotides of inosine, and cytokines such as tumor necrosis factor α. Since these components are not only clastogenic, but can stimulate further superoxide production by monocytes and neutrophils, the genotoxic effects are self-sustaining. It is shown here that anticlastogenic effects of exogenous SOD are preserved despite extensive washing of the cells and removal of all extracellular SOD. Using flow cytometry and confocal laser microscopy, rapid adherence of the fluorescently labeled enzyme to the cell surface could be observed with slow uptake into the cell during the following hours. The degree of labeling was concentration and time dependent. It was most important for monocytes, compared with lymphocytes, neutrophils, and fibroblasts. The cytochrome c assay showed significantly diminished O2− production by monocytes, pretreated with SOD and washed thereafter. The preferential and rapid binding of SOD to monocytes may be of importance not only for the superoxide-mediated genotoxic effects, described above, but also from a therapeutic standpoint. It can explain the observation that beneficial effects of injected SOD lasted for weeks and months despite rapid clearance of the enzyme from the blood stream according to pharmacodynamic studies.
Resumo:
We have developed high-density DNA microarrays of yeast ORFs. These microarrays can monitor hybridization to ORFs for applications such as quantitative differential gene expression analysis and screening for sequence polymorphisms. Automated scripts retrieved sequence information from public databases to locate predicted ORFs and select appropriate primers for amplification. The primers were used to amplify yeast ORFs in 96-well plates, and the resulting products were arrayed using an automated micro arraying device. Arrays containing up to 2,479 yeast ORFs were printed on a single slide. The hybridization of fluorescently labeled samples to the array were detected and quantitated with a laser confocal scanning microscope. Applications of the microarrays are shown for genetic and gene expression analysis at the whole genome level.
Resumo:
We report here the characterization of gp27 (hp24γ3), a glycoprotein of the p24 family of small and abundant transmembrane proteins of the secretory pathway. Immunoelectron and confocal scanning microscopy show that at steady state, gp27 localizes to the cis side of the Golgi apparatus. In addition, some gp27 was detected in COPI- and COPII-coated structures throughout the cytoplasm. This indicated cycling that was confirmed in three ways. First, 15°C temperature treatment resulted in accumulation of gp27 in pre-Golgi structures colocalizing with anterograde cargo. Second, treatment with brefeldin A caused gp27 to relocate into peripheral structures positive for both KDEL receptor and COPII. Third, microinjection of a dominant negative mutant of Sar1p trapped gp27 in the endoplasmic reticulum (ER) by blocking ER export. Together, this shows that gp27 cycles extensively in the early secretory pathway. Immunoprecipitation and coexpression studies further revealed that a significant fraction of gp27 existed in a hetero-oligomeric complex. Three members of the p24 family, GMP25 (hp24α2), p24 (hp24β1), and p23 (hp24δ1), coprecipitated in what appeared to be stochiometric amounts. This heterocomplex was specific. Immunoprecipitation of p26 (hp24γ4) failed to coprecipitate GMP25, p24, or p23. Also, very little p26 was found coprecipitating with gp27. A functional requirement for complex formation was suggested at the level of ER export. Transiently expressed gp27 failed to leave the ER unless other p24 family proteins were coexpressed. Comparison of attached oligosaccharides showed that gp27 and GMP25 recycled differentially. Only a very minor portion of GMP25 displayed complex oligosaccharides. In contrast, all of gp27 showed modifications by medial and trans enzymes at steady state. We conclude from these data that a portion of gp27 exists as hetero-oligomeric complexes with GMP25, p24, and p23 and that these complexes are in dynamic equilibrium with individual p24 proteins to allow for differential recycling and distributions.
Resumo:
A definite diagnosis of prion diseases such as Creutzfeldt–Jakob disease (CJD) relies on the detection of pathological prion protein (PrPSc). However, no test for PrPSc in cerebrospinal fluid (CSF) has been available thus far. Based on a setup for confocal dual-color fluorescence correlation spectroscopy, a technique suitable for single molecule detection, we developed a highly sensitive detection method for PrPSc. Pathological prion protein aggregates were labeled by specific antibody probes tagged with fluorescent dyes, resulting in intensely fluorescent targets, which were measured by dual-color fluorescence intensity distribution analysis in a confocal scanning setup. In a diagnostic model system, PrPSc aggregates were detected down to a concentration of 2 pM PrPSc, corresponding to an aggregate concentration of approximately 2 fM, which was more than one order of magnitude more sensitive than Western blot analysis. A PrPSc-specific signal could also be detected in a number of CSF samples from patients with CJD but not in control samples, providing the basis for a rapid and specific test for CJD and other prion diseases. Furthermore, this method could be adapted to the sensitive detection of other disease-associated amyloid aggregates such as in Alzheimer's disease.
Resumo:
The possible molecular basis for the previously described antagonistic interactions between adenosine A1 receptors (A1R) and dopamine D1 receptors (D1R) in the brain have been studied in mouse fibroblast Ltk− cells cotransfected with human A1R and D1R cDNAs or with human A1R and dopamine D2 receptor (long-form) (D2R) cDNAs and in cortical neurons in culture. A1R and D1R, but not A1R and D2R, were found to coimmunoprecipitate in cotransfected fibroblasts. This selective A1R/D1R heteromerization disappeared after pretreatment with the D1R agonist, but not after combined pretreatment with D1R and A1R agonists. A high degree of A1R and D1R colocalization, demonstrated in double immunofluorescence experiments with confocal laser microscopy, was found in both cotransfected fibroblast cells and cortical neurons in culture. On the other hand, a low degree of A1R and D2R colocalization was observed in cotransfected fibroblasts. Pretreatment with the A1R agonist caused coclustering (coaggregation) of A1R and D1R, which was blocked by combined pretreatment with the D1R and A1R agonists in both fibroblast cells and in cortical neurons in culture. Combined pretreatment with D1R and A1R agonists, but not with either one alone, substantially reduced the D1R agonist-induced accumulation of cAMP. The A1R/D1R heteromerization may be one molecular basis for the demonstrated antagonistic modulation of A1R of D1R receptor signaling in the brain. The persistence of A1R/D1R heteromerization seems to be essential for the blockade of A1R agonist-induced A1R/D1R coclustering and for the desensitization of the D1R agonist-induced cAMP accumulation seen on combined pretreatment with D1R and A1R agonists, which indicates a potential role of A1R/D1R heteromers also in desensitization mechanisms and receptor trafficking.
Resumo:
Although arsenic is a well-established human carcinogen, the mechanisms by which it induces cancer remain poorly understood. We previously showed arsenite to be a potent mutagen in human–hamster hybrid (AL) cells, and that it induces predominantly multilocus deletions. We show here by confocal scanning microscopy with the fluorescent probe 5′,6′-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate that arsenite induces, within 5 min after treatment, a dose-dependent increase of up to 3-fold in intracellular oxyradical production. Concurrent treatment of cells with arsenite and the radical scavenger DMSO reduced the fluorescent intensity to control levels. ESR spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-1-hydroxypiperidine (TEMPOL-H) as a probe in conjunction with superoxide dismutase and catalase to quench superoxide anions and hydrogen peroxide, respectively, indicates that arsenite increases the levels of superoxide-driven hydroxyl radicals in these cells. Furthermore, reducing the intracellular levels of nonprotein sulfhydryls (mainly glutathione) in AL cells with buthionine S-R-sulfoximine increases the mutagenic potential of arsenite by more than 5-fold. The data are consistent with our previous results with the radical scavenger DMSO, which reduced the mutagenicity of arsenic in these cells, and provide convincing evidence that reactive oxygen species, particularly hydroxyl radicals, play an important causal role in the genotoxicity of arsenical compounds in mammalian cells.
Resumo:
Adenosine and its endogenous precursor ATP are main components of the purinergic system that modulates cellular and tissue functions via specific adenosine and ATP receptors (P1 and P2 receptors), respectively. Although adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the ability of P1 and P2 receptors to form new functional structures such as a heteromer to control the complex purinergic cascade. Here we have shown that Gi/o protein-coupled A1 adenosine receptor (A1R) and Gq protein-coupled P2Y1 receptor (P2Y1R) coimmunoprecipitate in cotransfected HEK293T cells, suggesting the oligomeric association between distinct G protein-coupled P1 and P2 receptors. A1R and P2Y2 receptor, but not A1R and dopamine D2 receptor, also were found to coimmunoprecipitate in cotransfected cells. A1R agonist and antagonist binding to cell membranes were reduced by coexpression of A1R and P2Y1R, whereas a potent P2Y1R agonist adenosine 5′-O-(2-thiotriphosphate) (ADPβS) revealed a significant potency to A1R binding only in the cotransfected cell membranes. Moreover, the A1R/P2Y1R coexpressed cells showed an ADPβS-dependent reduction of forskolin-evoked cAMP accumulation that was sensitive to pertussis toxin and A1R antagonist, indicating that ADPβS binds A1R and inhibits adenylyl cyclase activity via Gi/o proteins. Also, a high degree of A1R and P2Y1R colocalization was demonstrated in cotransfected cells by double immunofluorescence experiments with confocal laser microscopy. These results suggest that oligomeric association of A1R with P2Y1R generates A1R with P2Y1R-like agonistic pharmacology and provides a molecular mechanism for an increased diversity of purine signaling.
Resumo:
Xylem cavitation in winter and recovery from cavitation in the spring were visualized in two species of diffuse-porous trees, Betula platyphylla var. japonica Hara and Salix sachalinensis Fr. Schm., by cryo-scanning electron microscopy after freeze-fixation of living twigs. Water in the vessel lumina of the outer three annual rings of twigs of B. platyphylla var. japonica and of S. sachalinensis gradually disappeared during the period from January to March, an indication that cavitation occurs gradually in these species during the winter. In April, when no leaves had yet expanded, the lumina of most of the vessels of both species were filled with water. Many vessel lumina in twigs of both species were filled with water during the period from the subsequent growth season to the beginning of the next winter. These observations indicate that recovery in spring occurs before the onset of transpiration and that water transport through twigs occurs during the subsequent growing season. We found, moreover, that vessels repeat an annual cycle of winter cavitation and spring recovery from cavitation for several years until irreversible cavitation occurs.