955 resultados para Cones. Dopamine. Eye. Ganglion cells. Rods. vision
Resumo:
Purpose: Anti-oxidation and exocytosis are important for maintaining exocrine tissue homeostasis. During aging, functional and structural alterations occur in the lacrimal gland (LG), including oxidative damage to proteins, lipids, and DNA. The aims of the present study were to determine in the aging LG: a) the effects of aging on LG structure and secretory activity and b) changes in the expression of oxidative stress markers. Methods: To address these goals, tear secretion composition and corneal impression cytology were compared between male Wistar rats of 2 (control) and 24 (aged) months. LG morphology and the expression levels of vitamin E and malonaldehyde (MDA) were evaluated to determine the anti-oxidant activity and lipid peroxidation, respectively. RT-PCR and western blot analysis were used for the analysis of Ras related in brain GTPase protein (Rab) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins of the secretory machinery (i.e.; Rab 3d, Rab 27, vesicle-associated membrane protein-2 (Vamp-2), and syntaxin). Results: Histological analysis of aged rats revealed a higher frequency of corneal epithelia metaplasia. In the acinar cells, organelles underwent degeneration, and lipofucsin-like material accumulated in the cytoplasm along with declines in the anti-oxidant marker vitamin E. Rab3d and Rab27b mRNA levels fell along with Rab3d protein expression, whereas syntaxin levels increased. Conclusions: These findings indicate that exocytotic and anti-oxidant mechanisms become impaired with age in the rat LG. In parallel with these structural alterations, functional declines may contribute to the pathophysiology caused by tear film modification in dry eye disease.
Resumo:
Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.
Resumo:
PURPOSES: To describe and interpret teachers' opinions about and responsiveness to guidance on optical aids for low vision. METHODS: It was conducted a cross-sectional analytical study. The convenience, non-random sample consisted of 58 teachers from the public school network of the city of Campinas. It was constructed and applied a structured questionnaire, available online at the assessed website. For qualitative data collection it was conducted an exploratory study using the focus group technique. RESULTS: Responses expressed, for the most part, a marked interest in the website, its easiness of access, and the comprehensive nature of the information provided. Most people reported frequent use of the Internet to seek information, and found it easier to access the Internet at home. Among the qualitative aspects of the evaluation, we should mention the perceived importance of the website as a source of information, despite some criticism about the accessibility and reliability of the information found on the Internet. CONCLUSION: Teachers' need for training to deal with visually impaired students and their positive response to advice and information lead to the conclusion that web-based guidelines on the use of optical aids were considered beneficial to ease the understanding of visual impairment and the rehabilitation of the affected subjects.
Resumo:
[EN]This paper describes a low-cost system that allows the user to visualize different glasses models in live video. The user can also move the glasses to adjust its position on the face. The system, which runs at 9.5 frames/s on general-purpose hardware, has a homeostatic module that keeps image parameters controlled. This is achieved by using a camera with motorized zoom, iris, white balance, etc. This feature can be specially useful in environments with changing illumination and shadows, like in an optical shop. The system also includes a face and eye detection module and a glasses management module.
Resumo:
Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).
Resumo:
AII Amakrinzellen sind Interneurone in der Retina und ein wichtiges Element der Stäbchenbahn von Säugetieren. Bei ihren Antworten auf Lichtreize generieren sie Aktionspotentiale, obwohl die ihnen vor- und nachgeschalteten Bipolarzellen graduierte Membranpotentiale aufweisen. Um die Verarbeitung der Lichtsignale in der Stäbchenbahn der Säuger besser zu verstehen wurden in der vorliegenden Arbeit Membranströme von AII Amakrinzellen und Veränderungen der intrazellulären Kalziumkonzentration mittels Indikatorfarbstoffe bei Mäusen simultan gemessen.Die spannungsabhängigen Kalziumkanäle waren durch eine negative Aktivierungsschwelle und eine sehr langsame Inaktivierung gekennzeichnet¸ ausserdem wurden sie von Dihydropyridinen (Agonisten und Antagonisten) moduliert. Sie fanden sich vor allem auf den keulenförmigen Fortsätzen von AII Amakrinzellen. Lokale Applikationen von Glutamat, AMPA oder Kainat lösten einwärtsgerichtete Ströme aus. Diese Ströme gingen einher mit einer Erhöhung der Fluoreszenz und zwar vor allem in den distalen Dendriten. NMDA löste keine Veränderung der Kalziumkonzentration aus und nur in wenigen Fällen Ströme (7 von 23).Diese Befunde deuten darauf hin, dass es sich bei den ionotropen Glutamat-Rezeptoren auf AII Amakrinzellen um solche vom AMPA Typ handelt. Diese befinden sich, sofern sie kalziumpermeabel sind (oder durch andere Mechanismen zu einer Erhöhung der [Ca2+]i führen) auf den distalen Dendriten nahe der Ganglienzellschicht.
Resumo:
The term Congenital Nystagmus (Early Onset Nystagmus or Infantile Nystagmus Syndrome) refers to a pathology characterised by an involuntary movement of the eyes, which often seriously reduces a subject’s vision. Congenital Nystagmus (CN) is a specific kind of nystagmus within the wider classification of infantile nystagmus, which can be best recognized and classified by means of a combination of clinical investigations and motility analysis; in some cases, eye movement recording and analysis are indispensable for diagnosis. However, interpretation of eye movement recordings still lacks of complete reliability; hence new analysis techniques and precise identification of concise parameters directly related to visual acuity are necessary to further support physicians’ decisions. To this aim, an index computed from eye movement recordings and related to the visual acuity of a subject is proposed in this thesis. This estimator is based on two parameters: the time spent by a subject effectively viewing a target (foveation time - Tf) and the standard deviation of eye position (SDp). Moreover, since previous studies have shown that visual acuity largely depends on SDp, a data collection pilot study was also conducted with the purpose of specifically identifying eventual slow rhythmic component in the eye position and to characterise in more detail the SDp. The results are presented in this thesis. In addition, some oculomotor system models are reviewed and a new approach to those models, i.e. the recovery of periodic orbits of the oculomotor system in patients with CN, is tested on real patients data. In conclusion, the results obtained within this research consent to completely and reliably characterise the slow rhythmic component sometimes present in eye position recordings of CN subjects and to better classify the different kinds of CN waveforms. Those findings can successfully support the clinicians in therapy planning and treatment outcome evaluation.
Resumo:
The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.
Resumo:
Robben sind amphibische marine Säugetiere. Das bedeutet, dass sie zweirnunterschiedliche Lebensräume, Wasser und Land, bewohnen. Ihre sensorischen Systeme müssen auf beide Medien abgestimmt sein. Gerade für das Sehvermögen ist es eine große Herausforderung, sich den zwei optisch unterschiedlichen Medien anzupassen. Deshalb sind Forscher an dem Sehen von marinen Säugern seit dem zwanzigsten Jahrhundert so sehr interessiert. rnBis heute wird kontrovers diskutiert, ob marine Säugetiere Farbe sehen können, da sie durch einen Gendefekt nur einen Zapfentyp besitzen und somit zu den Zapfen-Monochromaten gehören. Dressurexperimente zeigten jedoch, dass Seebären und Seelöwen in der Lage sind grüne und blaue Testfelder von Graustufen zu unterscheiden (Busch & Dücker, 1987; Griebel & Schmid, 1992).rnUm auszuschließen, dass die Tiere ein Farbensehen über die Unterscheidung von Helligkeit vortäuschen, wurde in der vorliegenden Arbeit zunächst die Kontrasterkennung untersucht und danach Tests auf Farbensehen durchgeführt. Als Versuchstiere dienten zwei Seehunde (Phoca vitulina) und zwei Südafrikanische Seebären (Arctocephalus pusillus). Alle Versuche wurden unter freien Himmel im Zoo Frankfurt durchgeführt. Den Tieren wurden immer drei Testfelder zur Auswahl geboten: zwei waren gleich und zeigten ein homogenen Hintergrund, das dritte zeigte ein Dreieck auf demselben Hintergrund. Die Tiere wurden auf das Dreieck dressiert. In den Versuchen zum Helligkeitskontrast wurden graue Dreiecke auf grauem Hintergrund verwendet. Das Dreieck wurde nicht erkannt bei einem Luminanz-Kontrast (K= LD/(LD+LH)) zwischen 0,03 und -0,12.rnBeim Test auf Farbensehen wurden die Farben Blau, Grün, Gelb und Orange auf grauem Hintergrund verwendet. Die Testreihen zeigten, dass jedes Tier auch in Bereichen von geringem Helligkeitskontrast hohe Wahlhäufigkeiten auf das farbige Dreieck erzielte und somit eindeutig die Farben Blau, Grün und Gelb sehen konnte. Lediglich bei der Farbe Orange kann keine Aussage zum Farbensehen getroffen werden, da das farbige Dreieck immer dunkler war als der Hintergrund. rnZusammenfassend konnte in dieser Arbeit gezeigt werden, dass Seehunde und Seebären in der Lage sind Farbe zu sehen. Vermutlich beruht diese Fähigkeit auf der Interaktion von Stäbchen und Zapfen. rn
Resumo:
Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56 delta (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, co-immunoprecipitation, blot overlay and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small t antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition. Key words: Natriuresis, Sodium transport, Signal transduction.
Resumo:
PURPOSE. To evaluate the role of fellow eye status in determining progression of geographic atrophy (GA) in patients with age-related macular degeneration (AMD). METHODS. A total of 300 eyes with GA of 193 patients from the prospective, longitudinal, natural history FAM Study were classified into three groups according to the AMD manifestation in the fellow eye at baseline examination: (1) bilateral GA, (2) early/intermediate AMD, and (3) exudative AMD. GA areas were quantified based on fundus autofluorescence images using a semiautomated image-processing method, and progression rates (PR) were estimated using two-level, linear, mixed-effects models. RESULTS. Crude GA-PR in the bilateral GA group (mean, 1.64 mm(2)/y; 95% CI, 1.478-1.803) was significantly higher than in the fellow eye early/intermediate group (0.74 mm(2)/y, 0.146-1.342). Although there was a significant difference in baseline GA size (P = 0.0013, t-test), and there was a significant increase in GA-PR by 0.11 mm(2)/y (0.05-0.17) per 1 disc area (DA; 2.54 mm(2)), an additional mean change of -0.79 (-1.43 to -0.15) was given to the PR beside the effect of baseline GA size. However, this difference was only significant when GA size was ?1 DA at baseline with a GA-PR of 1.70 mm(2)/y (1.54-1.85) in the bilateral and 0.95 mm(2)/y (0.37-1.54) in the early/intermediate group. There was no significant difference in PR compared with that in the fellow eye exudative group. CONCLUSIONS. The results indicate that the AMD manifestation of the fellow eye at baseline serves as an indicator for disease progression in eyes with GA ? 1 DA. Predictive characteristics not only contribute to the understanding of pathophysiological mechanisms, but also are useful for the design of future interventional trials in GA patients.
Resumo:
Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.
Resumo:
Bacterial meningitis (BM) frequently causes persisting neurofunctional sequelae. Autopsy studies in patients dying from BM show characteristic apoptotic brain injury to the stem cell niche in the subgranular zone of the hippocampal dentate gyrus (DG), and this form of brain damage is associated with learning and memory deficits in experimental BM. With an eye to potential regenerative therapies, the survival, migration, and differentiation of neuronal precursor cells (NPCs) were evaluated after engraftment into the injured hippocampus in vitro and in vivo in an infant rat model of pneumococcal meningitis. Green fluorescent protein (GFP)-expressing NPCs were grafted into the DG of organotypic hippocampal slice cultures injured by challenge with live Streptococcus pneumoniae. Seven days after engraftment, NPCs had migrated from the site of injection into the injured granular layer of the DG and electro-functionally integrated into the hippocampal network. In vivo, GFP-expressing NPCs migrated within 1 week from the injection site in the hilus region to the injured granular layer of the hippocampal DG and showed neuronal differentiation at 2 and 4 weeks after transplantation. Hippocampal injury induced by BM guides grafted NPCs to the area of brain damage and provides a microenvironment for neuronal differentiation and functional integration.
Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells
Resumo:
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.