850 resultados para Conditions of practice
Resumo:
To address daily fluctuations in electricity demands, the quantities of water passing through the turbines of hydropower plants can vary significantly (up to fourfold) during a 24-h cycle. This study evaluates the effects of hourly variations in water discharges on the limnological conditions observed in two below-dam river stretches. The study reservoirs, Capivara and Taquaruçu, are the 9th and 10th reservoirs in a cascade of dams in the Paranapanema River in south-east Brazil. The reservoirs exhibit different trophic conditions, water retention times, thermal regimes and spillway positions. Capivara Reservoir is deeper, meso-eutrophic, with a high water retention time and hypolimnetic discharges (32 m) varying between 500 and 1400 m3 s-1. In contrast, Taquaruçu Reservoir is relatively shallow, oligo-mesotrophic, and has a low retention time, with water discharges varying between 500 and 2000 m3 s-1. Its turbine water intake zone also is more superficial (7 m). For two periods of the year, winter and summer, profiles of limnological measurements were developed in the lacustrine (above-dam site) zones of the reservoirs, as well as in the downstream river stretches (below-dam site). In both cases, the sampling was carried out at 4-h intervals over a complete nictemeral cycle. The results demonstrated that the reservoir operating regime (water discharge variations) promoted significant differences in the conditions of the river below the dams, especially for water velocity, turbidity, and nutrient and suspended solids concentrations. The reservoir physical characteristics, including depth, thermal stratification and outlet structure, are also key factors influencing the limnology and water quality at the below-dam sampling sites. In the case of Capivara Reservoir, for example, the low dissolved oxygen concentration (<5.0 mg L-1) in its bottom water layer was transferred to the downstream river stretches during the summer. These study results demonstrated that it is important to continue such investigations as a means of verifying whether or not these high-amplitude/low-frequency variations could negatively affect the downstream river biota. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Asia Pty Ltd.
Resumo:
Background and aims. Dementia weakens older people and can lead to malnutrition; therefore, the objective of this study was to assess the association between indicators of dementia and biochemical indicators, anthropometric indicators and food intake in institutionalised older people. Methods. A total of 150 older people of both genders participated in this study. Nutritional status was determined by body mass index and other anthropometric variables, and biochemical indicators were used to analyse the differences between individuals with and without dementia. Energy and nutrient intakes were determined by food records, and dementia was investigated with the Mini-Mental State Examination. The data were analysed by the chi-square test, Student's t-test and Mann-Whitney tests. Results. Of the 150 individuals studied, 48% were men with a mean age of 73±10years and 52% were women with a mean age of 80±9years. Thirty-six per cent had some degree of malnutrition and 48% presented dementia, which was more prevalent in women (59%). The nutritional status of men and women individuals with and without dementia differed significantly (P<0.001 for men and women). The only variables that presented a significant difference between individuals with and without dementia were those associated with muscle mass in men. There were no differences in energy and nutrient intakes between individuals with and without dementia except for vitamin C intake, which differed among women (P=0.032). Conclusion. In the conditions of the present study, dementia was associated with nutritional status, but not with energy and nutrient intakes, suggesting that older people with dementia may have higher nutritional requirements. Implications for practice. Investigation of dementia may contribute to the nutritional status assessment of older people and energy expenditure and immobility should be investigated for a more complete assessment. © 2012 Blackwell Publishing Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Ciêntífico e Tecnológico (CNPq)
Resumo:
Regeneration microsites are characterized by diverse combinations of attributes which assure the best conditions for seed germination and seedling establishment. By understanding these attributes, we can contribute to determining better management methodologies for reestablishing ecological process in sites under restoration. Thus, we sought to characterize and differentiate the micro-site conditions of restoration plantings to indentify likely physical-chemical limitations for the establishment of native tree species in the forest understory. This study was carried out in reforestation plantings with different ages (10, 22 and 55 years). The physical-chemical characterization of the micro-site of regeneration of the study areas was carried out by evaluating the soil compression level, porosity, humidity, organic matter and nutrients content and granulometry, as well as litter dry mass and canopy cover. An increase on the canopy cover and soil porosity, humidity, clay and organic matter content were observed in the oldest restored areas, as well as a decrease in soil compression. Thus, these findings demonstrated that the evaluated microsite properties are in process of restoration. Therefore, microsite conditions for seedling establishment become even more similar to reference ecosystems as restoration planting evolve.
Resumo:
Lignin is a macromolecule frequently obtained as residue during technological processing of biomass. Modifications in chemical structure of lignin generate valuable products, some with particular and unique characteristics. One of the available methods for modification of industrial lignin is oxidation by hydrogen peroxide. In this work, we conducted systematic studies of the oxidation process that were carried out at various pHs and oxidizing agent concentrations. Biophysical, biochemical, structural properties of the oxidized lignin were analyzed by UV spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy and small angle X-ray scattering. Our results reveal that lignin oxidized with 9.1% H(2)O(2) (m/v) at pH 13.3 has the highest fragmentation, oxidation degree and stability. Although this processing condition might be considered quite severe, we have concluded that the stability of the obtained oxidized lignin was greatly increased. Therefore, the identified processing conditions of oxidation may be of practical interest for industrial applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Increasing knowledge on the endocrine mechanisms that regulate feeding and growth in cultured fish can contribute to make improvement in fish holding conditions and feeding strategies, supporting the development of new techniques that could ameliorate feeding, food conversion efficiency and growth in aquaculture practice. The main objective of this study was to investigate how daily mRNA expression of three specific anorexigenic hormones, i.e. the corticotropin-releasing hormone (CRH) and the paralogues α- and β- proopiomelanocortin (POMC), is modulated by different photoperiods, light spectra and feeding regimes, in both adult and larvae of Solea senegalensis. In addition, as Senegalese sole exhibits a shift from diurnal to nocturnal in locomotor activity and feeding habits during metamorphic process, we tried to elucidate if this shift is accompanied by relevant daily variations in the expression of these anorexigenic hormones before, during and after the completion of metamorphosis. In order to reach this main objective, three main experiments were developed. In a first experiment, adults were reared under LD (12 h light: 12h dark) cycle and fed at mid-light (ML), mid-dark (MD) and at random (RND). In a second experiment, adult specimens were reared in constant darkness (DD) and fed at subjective mid-light (sML) or at RND. Larvae of Senegalese sole were reared under LD cycle with white, blue or red light for 40 days. Our results show an independence of crh mRNA expression from the feeding time and suggest an endogenous control of crh expression in sole. Both pomc paralogues showed significant daily rhythms under LD conditions. The rhythms were maintained or were even more robust under DD conditions for pomc_a, but were completely abolished for pomc_b. Our results indicate an endogenous control of pomc_a expression by the molecular clock in telencephalon and diencephalon, but not in the pituitary gland. Our findings confirm for the first time the significant influence that ambient lighting has on larval growth and development in Senegalese sole, revealing an important effect of light spectra upon functional elements of this species. Our results also emphasize the importance of maintaining cycling light-dark conditions of the adequate wavelengths in aquaculture practices during early development of sole.
Resumo:
As a group of experienced and novice youth workers, we believe that youth work is fundamentally about building trust-filled, mutually respectful relationships with young people. We create safe environments for young people to connect with other supportive adults and peers and to avoid violence in their neighborhoods and their homes. We guide those harmed by oppressive community conditions such as racism, sexism, agism, homophobia, and classism through a process of healing. As we get to know more about young people’s interests, we help them develop knowledge and skills in a variety of areas including: academic, athletic, leadership/civic, the arts, health and wellbeing, and career exploration. In short, we create transformative experiences for young people. In spite of the critical roles we play, we have largely been overlooked in youth development research, policy, and as a professional workforce. We face challenges ‘moving up’ in our careers. We get frustrated by how little money we earn. We are discouraged that despite our knowledge and experience we are not invited to the tables where youth funding, programming, and policy decisions are made. It is true—many of us do not have formal training or degrees in youth work—a reality which at times we regret. Yet, as our colleague communicates in the accompanying passage (see below), we resent that formal education is required for us to get ahead, particularly because we question whether we need it to do our jobs more effectively. Through the “What is the Value of Youth Work?” symposium, we hope to address these concerns through a dialogue about youth work with the following objectives: • Increase awareness of the knowledge, skills, contributions, and professionalism of youth workers; • Advance a youth worker professional development model that integrates a dilemma-focused approach with principles of social justice youth development; • Launch an ongoing Worcester area Youth Worker network. This booklet provides a brief overview of the challenges in ‘professionalizing’ youth work and an alternative approach that we are advancing that puts the knowledge and expertise of youth workers at the center of professional development.
Resumo:
BACKGROUND AND OBJECTIVE: The aim of this study was to determine which of two clinically applied methods, electromyography or acceleromyography, was less affected by external disturbances, had a higher sensitivity and which would provide the better input signal for closed loop control of muscle relaxation. METHODS: In 14 adult patients, anaesthesia was induced with intravenous opioids and propofol. The response of the thumb to ulnar nerve stimulation was recorded on the same arm. Mivacurium was used for neuromuscular blockade. Under stable conditions of relaxation, the infusion-rate was decreased and the effects of turning the hand were investigated. RESULTS: Electromyography and acceleromyography both reflected the change of the infusion rate (P = 0.015 and P < 0.001, respectively). Electromyography was significantly less affected by the hand-turn (P = 0.008) than acceleromyography. While zero counts were detected with acceleromyography, electromyography could still detect at least one count in 51.1%. CONCLUSIONS: Electromyography is more reliable for use in daily practice as it is less influenced by external disturbances than acceleromyography.
Resumo:
In his recent book on the contemporary politics of social work, Powell (2001) nominates Jan Fook and Karen Healy as two Australian authors who have made significant contributions to the radical or critical social work tradition. I have chosen to review them together, as each, in different ways, attempts to achieve the same purpose. That is, they attempt to provide a convincing account for adopting a critical approach to practice in the contemporary conditions of the 21st century and, in doing so, re-invigorate the radical tradition of social work practice. My first comment, important for the readership of this international journal, is that both books easily 'travel' beyond the Australian context.
Resumo:
GPL enforcement is successful in Europe. In several court decisions and out of court settlements the license conditions of the GPL have been successfully enforced. In particular, embedded systems are the main focus of such compliance activities. The article describes the practice of enforcement activities and the legal prerequisites under the application of German law.
Resumo:
Multiprofessional collaboration in all-day schools refers to teamwork and coordination that takes place between professionals with different vocational backgrounds. In Switzerland, all-day schoolscomprise regular school instruction and school-based extracurricular activities. Nevertheless, multiprofessional collaboration can also refer to collaboration between education professionals in all-day schools and professionals outside the school in a community-based setting of extracurricular activities. A synthesis of the literature shows that collaboration inside and outside the school setting is promoted by conditions in three areas: structural characteristics of the institution, characteristics of the team, and interpersonal processes (Schüpbach, Jutzi & Thomann 2012). In view of these findings, it was the aim of this study to analyze conditions of good collaboration practices in all-day schools in Switzerland. This qualitative study examined 10 all-day schools in five different cantons in the German-speaking part of Switzerland that showed good collaboration practice. In the course of this study, we conducted 18 problem-centered interviews and 10 focus group discussions. In the process of data evaluation, we applied the method of qualitative content analy sis. The findings show that all of the three areas of conditions promoting good collaboration proved to be relevant in the whole sample of all-day schools. Nevertheless, for the three different types of collaboration found? The school- oriented, the mixed/in termediate, and the social environment-oriented type? We identified different conditions of good collaboration practice.
Resumo:
BACKGROUND AND OBJECTIVE Phenotyping cocktails use a combination of cytochrome P450 (CYP)-specific probe drugs to simultaneously assess the activity of different CYP isoforms. To improve the clinical applicability of CYP phenotyping, the main objectives of this study were to develop a new cocktail based on probe drugs that are widely used in clinical practice and to test whether alternative sampling methods such as collection of dried blood spots (DBS) or saliva could be used to simplify the sampling process. METHODS In a randomized crossover study, a new combination of commercially available probe drugs (the Basel cocktail) was tested for simultaneous phenotyping of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Sixteen subjects received low doses of caffeine, efavirenz, losartan, omeprazole, metoprolol and midazolam in different combinations. All subjects were genotyped, and full pharmacokinetic profiles of the probe drugs and their main metabolites were determined in plasma, dried blood spots and saliva samples. RESULTS The Basel cocktail was well tolerated, and bioequivalence tests showed no evidence of mutual interactions between the probe drugs. In plasma, single timepoint metabolic ratios at 2 h (for CYP2C19 and CYP3A4) or at 8 h (for the other isoforms) after dosing showed high correlations with corresponding area under the concentration-time curve (AUC) ratios (AUC0-24h parent/AUC0-24h metabolite) and are proposed as simple phenotyping metrics. Metabolic ratios in dried blood spots (for CYP1A2 and CYP2C19) or in saliva samples (for CYP1A2) were comparable to plasma ratios and offer the option of minimally invasive or non-invasive phenotyping of these isoforms. CONCLUSIONS This new combination of phenotyping probe drugs can be used without mutual interactions. The proposed sampling timepoints have the potential to facilitate clinical application of phenotyping but require further validation in conditions of altered CYP activity. The use of DBS or saliva samples seems feasible for phenotyping of the selected CYP isoforms.
Resumo:
The study assessed the brain electric mechanisms of light and deep hypnotic conditions in the framework of EEG temporal microstates. Multichannel EEG of healthy volunteers during initial resting, light hypnosis, deep hypnosis, and eventual recovery was analyzed into temporal EEG microstates of four classes. Microstates are defined by the spatial configuration of their potential distribution maps ([Symbol: see text]potential landscapes') on the head surface. Because different potential landscapes must have been generated by different active neural assemblies, it is reasonable to assume that they also incorporate different brain functions. The observed four microstate classes were very similar to the four standard microstate classes A, B, C, D [Koenig, T. et al. Neuroimage, 2002;16: 41-8] and were labeled correspondingly. We expected a progression of microstate characteristics from initial resting to light to deep hypnosis. But, all three microstate parameters (duration, occurrence/second and %time coverage) yielded values for initial resting and final recovery that were between those of the two hypnotic conditions of light and deep hypnosis. Microstates of the classes B and D showed decreased duration, occurrence/second and %time coverage in deep hypnosis compared to light hypnosis; this was contrary to microstates of classes A and C which showed increased values of all three parameters. Reviewing the available information about microstates in other conditions, the changes from resting to light hypnosis in certain respects are reminiscent of changes to meditation states, and changes to deep hypnosis of those in schizophrenic states.