975 resultados para Concentration of capital


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this pilot study, we report on levels of persistent organohalogenated contaminants (OHCs) in hair of polar bears (Ursus maritimus) from East Greenland sampled between 1999 and 2001. To our knowledge, this is the first study on the validation of polar bear hair as a non-invasive matrix representative of concentrations and profiles in internal organs and blood plasma. Because of low sample weights (13-140 mg), only major bioaccumulative OHCs were detected above the limit of quantification: five polychlorinated biphenyl (PCB) congeners (CB 99, 138, 153, 170 and 180), one polybrominated diphenyl ether (PBDE) congener (BDE 47), oxychlordane, trans-nonachlor and ß-hexachlorocyclohexane. The PCB profile in hair was similar to that of internal tissues (i.e. adipose, liver, brain and blood), with CB 153 and 180 as the major congeners in all matrices. A gender difference was found for concentrations in hair relative to concentrations in internal tissues. Females (n = 6) were found to display negative correlations, while males (n = 5) showed positive correlations, although p-values were not found significant. These negative correlations in females may reflect seasonal OHC mobilisation from periphery adipose tissue due to, for example, lactation and fasting. The lack of significance in most correlations may be due to small sample sizes and seasonal variability of concentrations in soft tissues. Further research with larger sample weights and sizes is therefore necessary to draw more definitive conclusions on the usefulness of hair for biomonitoring OHCs in polar bears and other fur mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DSDP Leg 92 drilled at four sites along an east-west transect at 19°S on the western flank of the East Pacific Rise (EPR), in an area where sediments are essentially a mixture of hydrothermal and biogenic components, with only a minimal contribution of clastic material. Rare-earth element (REE) data on the metalliferous (non-carbonate) fraction of samples ranging in age from ~2 to ~27 Ma indicate the existence of two distinct groups of patterns corresponding to two broad age groups, one <=8 Ma, the other >=10 Ma. Within each group, REE patterns have characteristics which are near-uniform, despite large variations in total REE abundances. Sediments of the younger group are enriched in light REE (LREE) relative to deep bottom waters influenced by the hydrothermal plume extending west from the EPR at 19°S. Sediments of the older groups show further relative LREE enrichment and/or heavy REE (HREE) depletion. Surficial sediments deposited beneath the lysocline have high Sum REE concentrations resulting from slow accumulation rates, and patterns resembling older sediments due to early diagenetic effects. A correlation between the mass accumulation rates (MAR) of Sum REE and Fe + Mn suggests that ferromanganese particulate matter supplied by the hydrothermal plume scavenges REE; during this process the LREE are preferentially removed from plume seawater. The MAR of Fe + Mn shows a general decrease with age above basement, whereas Sum REE concentrations in the metalliferous component increase with age above basement. This supports the Ruhlin and Owen model wherein limited scavenging of REE, due to rapid burial of sediment near the palaeo-axis, leads to low concentrations (but high MAR-values) for the REE. Following deposition and burial of the hydrothermal component, further relative flattening of the REE pattern takes place, probably the result of diagenetic reactions over several million years. Phase partitioning data indicate that the proportion of REE residing in more poorly crystalline phases tends to increase with age (from ~45% to 90% of Sum REE). This suggests that as initial ferromanganese precipitates undergo diagenetic recrystallization, REE are transferred to the poorly crystalline phases, and/or are scavenged from pore waters by these phases. Because of the various modifications to REE patterns apparently produced both in the water column and post-depositional settings, the REE patterns of metalliferous sediments will not reflect fine-scale REE variations in associated oceanic water masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate presence and potential accumulation of cyclic volatile methyl siloxanes (cVMS) in the Arctic environment. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcy-clohexasiloxane (D6) were analyzed in sediment, Zooplankton, Atlantic cod (Gadus morhua), shorthorn sculpin (Myxocephalus scorpius), and bearded seal (Erignathus barbatus) collected from the Svalbard archipelago within the European Arctic in July 2009. Highest levels were found for D5 in fish collected from Adventfjorden, with average concentrations of 176 and 531 ng/g lipid in Atlantic cod and shorthorn sculpin, respectively. Decreasing concentration of D5 in sediment collected away from waste water outlet in Adventfjorden indicates that the local settlement of Longyearbyen is a point source to the local aquatic environment. Median biota sediment accumulation factors (BSAFs) calculated for D5 in Adventfjorden were 2.1 and 1.5 for Atlantic cod and shorthorn sculpin, respectively. Biota concentrations of D5 were lower or below detection limits in remote and sparsely populated regions (Kongsfjorden and Liefdefjorden) compared to Adventfjorden. The levels of cVMS were found to be low or below detection limits in bearded seal blubber and indicate a low risk for cVMS accumulation within mammals. Accumulation of cVMS in fish appears to be influenced by local exposure from human settlements within the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theories explaining the origin of the abrupt, massive discharges of ice-rafted detritus (IRD) into the glacial North Atlantic (the Heinrich layers (HLs)) generally point to the Laurentide ice sheet as the sole source of these events, until it was found that the IRDs also originated from Icelandic and European ice sheets (Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005; Snoeckx et al., 1999, doi:10.1016/S0025-3227(98)00168-6; Grousset et al., 2000, doi:10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2). This apparent contradiction must be reconciled as it raises fundamental questions about the mechanism(s) of HL origin. We have analyzed two ~12 cm thick HLs in an ultrahigh-resolution mode (1-2 century intervals) in a mid-Atlantic ridge piston core. The d18O record (N. pachyderma left coiling) reveals strong excursions induced by the melting of the icebergs; these excursions are associated with a strong decrease in the amount of planktic foraminafersand with a 3°C cooling of the surface waters. Counts of coarse detrital grains reveal that IRD are deposited according to a typical sequence (1) volcanic glass, (2) quartz and feldspars, (3) detrital carbonate, that implies a chronology in the melting of the differentpan-Atlantic ice sheets. Sr and Nd isotopic composition confirm that in both Heinrich layers H1 and H2, "precursor" IRD came from first Europe/Iceland, followed then by Laurentide-derived IRD. An internal cyclicity can be identified: during H1 and H2, about four to six major, abrupt discharges occurred roughly on a century timescale. The d13C and d15N records reveal that dominant inputs of continent-derived organic matter are associated with IRD within the HLs, hiding the plankton productivity signal.