978 resultados para Computing device mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na(+) and Cl(-) in the kidney, we asked whether NO regulates net Cl(-) flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl(-) absorption. Cl(-) absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM N(G)-nitro-l-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na(+)-dependent Cl(-)/HCO3(-) exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H(+)-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na(+) channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl(-) absorption in the CCD through a mechanism that is ENaC-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity, insulin resistance and associated cardiovascular complications are reaching epidemic proportions worldwide and represent a major public health problem. Over the past decade, evidence has accumulated indicating that insulin administration, in addition to its metabolic effects, also has important cardiovascular actions. The sympathetic nervous system and the L-arginine-nitric oxide pathway are the central players in the mediation of insulin's cardiovascular actions. Based on recent animal and human research, we demonstrate that both defective and augmented NO synthesis represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states. These observations provide the rationale for the use of pharmaceutical drugs releasing small and physiological amounts of NO and/or inhibitors of NO overproduction as a future treatment for insulin resistance and associated comorbidities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and objectives: The AMS 800TM is considered the gold standard for sphincter replacement. However, the one-ring design can erode the urethra and lead to severe complications. A mechanism that could alternatively compress successive segments of the urethra would limit such deleterious outcome. We report 12 weeks animal urethral tissue analysis following implantation of a new modular artificial sphincter. METHODS: The device is composed by three parts: the contractile unit, two rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor connected to an external computer. The computer can reveal specific failure of device components. The device was impkanted in eight male sheep. The rings were positioned around the urethra and the control unit was placed 5cm away. The device was working twenty hours per day; it was open 10min. per hour to allow urination. The animals were sacrificed after 12 weeks. The urethra and the tissues surrounding the control unit were macroscopically and microscopically examined. Two transversal sections crossing the sphincter and two transversal sections crossing the urethra alone were obtained and stained with modified Paragon after resin embedding. Urethra was also embedded in paraffin. The first section was stained with safranin-hematoxylin-eosin, the second section was stained with Masson's Trichrome and the remaining eight sections were available for immunolabelling of the macrophages.Results: The chronic study went uneventful. No clinical infection or pain was observed. The computer registered no specific failure in ring function, Nitinol wires and tube connectors. At explantation, except for a slight grade of lymphocytes in two out of eight specimens, no urethral stricture or atrophy could be observed. Immunohistochemistry confirmed the absence of macrophages. Tissue structure and organization of the urethra with and without artificial sphincter were similar. No migration of the device was observed.Conclusions: The study clearly showed no tissue damage or inflammation of the urethra. Electronic design, preservation of urethral vascularisation and adjustability after implantation are the key ideas to improve the actual AUS. Further studies will be carried out to evaluate this potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no effect of luminal hydrochlorothiazide on either Cl(-) absorption or transepithelial voltage (V(T)). However, application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid or application of a Na(+)-K(+)-ATPase inhibitor to the bath reduced Cl(-) absorption by ∼66-75% and nearly obliterated lumen-negative V(T). In contrast, ENaC inhibition had no effect in CCDs from collecting duct-specific ENaC-null mice (Hoxb7:CRE, Scnn1a(loxlox)). Whereas benzamil-sensitive Cl(-) absorption did not depend on CFTR, application of a Na(+)-K(+)-2Cl(-) cotransport inhibitor (bumetanide) to the bath or ablation of the gene encoding Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) blunted benzamil-sensitive Cl(-) absorption, although the benzamil-sensitive component of V(T) was unaffected. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, whereas thiazide-sensitive Cl(-) absorption is undetectable. Second, benzamil-sensitive Cl(-) absorption occurs by inhibition of ENaC, possibly due to elimination of lumen-negative V(T). Finally, benzamil-sensitive Cl(-) flux occurs, at least in part, through transcellular transport through a pathway that depends on NKCC1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Atrial fibrillation is a very common heart arrhythmia, associated with a five-fold increase in the risk of embolic strokes. Treatment strategies encompass palliative drugs or surgical procedures all of which can restore sinus rhythm. Unfortunately, atria often fail to recover their mechanical function and patients therefore require lifelong anticoagulation therapy. A motorless volume displacing device (Atripump) based on artificial muscle technology, positioned on the external surface of atrium could avoid the need of oral anticoagulation and its haemorrhagic complications. An animal study was conducted in order to assess the haemodynamic effects that such a pump could provide. METHODS: Atripump is a dome-shape siliconecoated nitinol actuator sewn on the external surface of the atrium. It is driven by a pacemaker-like control unit. Five non-anticoagulated sheep were selected for this experiment. The right atrium was surgically exposed, the device sutured and connected. Haemodynamic parameters and intracardiac ultrasound (ICUS) data were recorded in each animal and under three conditions; baseline; atrial fibrillation (AF); atripump assisted AF (aaAF). RESULTS: In two animals, after 20 min of AF, small thrombi appeared in the right atrial appendix and were washed out once the pump was turned on. Assistance also enhanced atrial ejection fraction. 31% baseline; 5% during AF; 20% under aaAF. Right atrial systolic surfaces (cm2) were; 5.2 +/- 0.3 baseline; 6.2 +/- 0.1 AF; 5.4 +/- 0.3 aaAF. CONCLUSION: This compact and reliable pump seems to restore the atrial "kick" and prevents embolic events. It could avoid long-term anticoagulation therapy and open new hopes in the care of end-stage heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of our study was to assess the feasibility of minimally invasive digestive anastomosis using a modular flexible magnetic anastomotic device made up of a set of two flexible chains of magnetic elements. The assembly possesses a non-deployed linear configuration which allows it to be introduced through a dedicated small-sized applicator into the bowel where it takes the deployed form. A centering suture allows the mating between the two parts to be controlled in order to include the viscerotomy between the two magnetic rings and the connected viscera. METHODS AND PROCEDURES: Eight pigs were involved in a 2-week survival experimental study. In five colorectal anastomoses, the proximal device was inserted by a percutaneous endoscopic technique, and the colon was divided below the magnet. The distal magnet was delivered transanally to connect with the proximal magnet. In three jejunojejunostomies, the first magnetic chain was injected in its linear configuration through a small enterotomy. Once delivered, the device self-assembled into a ring shape. A second magnet was injected more distally through the same port. The centering sutures were tied together extracorporeally and, using a knot pusher, magnets were connected. Ex vivo strain testing to determine the compression force delivered by the magnetic device, burst pressure of the anastomosis, and histology were performed. RESULTS: Mean operative time including endoscopy was 69.2 ± 21.9 min, and average time to full patency was 5 days for colorectal anastomosis. Operative times for jejunojejunostomies were 125, 80, and 35 min, respectively. The postoperative period was uneventful. Burst pressure of all anastomoses was ≥ 110 mmHg. Mean strain force to detach the devices was 6.1 ± 0.98 and 12.88 ± 1.34 N in colorectal and jejunojejunal connections, respectively. Pathology showed a mild-to-moderate inflammation score. CONCLUSIONS: The modular magnetic system showed enormous potential to create minimally invasive digestive anastomoses, and may represent an alternative to stapled anastomoses, being easy to deliver, effective, and low cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl--dependent HCO3- secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1-/- mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1-/- mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3- secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hair follicles, dermal papilla (DP) and dermal sheath (DS) cells exhibit striking levels of plasticity, as each can regenerate both cell types. Here, we show that thrombin induces a phosphoinositide 3-kinase (PI3K)-Akt pathway-dependent acquisition of DS-like properties by DP cells in vitro, involving increased proliferation rate, acquisition of ;myofibroblastic' contractile properties and a decreased capacity to sustain growth and survival of keratinocytes. The thrombin inhibitor protease nexin 1 [PN-1, also known as SERPINE2) regulates all those effects in vitro. Accordingly, the PI3K-Akt pathway is constitutively activated and expression of myofibroblastic marker smooth-muscle actin is enhanced in vivo in hair follicle dermal cells from PN-1(-/-) mice. Furthermore, physiological PN-1 disappearance and upregulation of the thrombin receptor PAR-1 (also known as F2R) during follicular regression in wild-type mice also correlate with such changes in DP cell characteristics. Our results indicate that control of thrombin signaling interferes with hair follicle dermal cells plasticity to regulate their function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.