928 resultados para Computational Intelligence System
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
The purpose of this thesis is to further the understanding of the structural, electronic and magnetic properties of ternary inter-metallic compounds using density functional theory (DFT). Four main problems are addressed. First, a detailed analysis on the ternary Heusler compounds is made. It has long been known that many Heusler compounds ($X_2YZ$; $X$ and $Y$ transition elements, $Z$ main group element) exhibit interesting half-metallic and ferromagnetic properties. In order to understand these, the dependence of magnetic and electronic properties on the structural parameters, the type of exchange-correlation functional and electron-electron correlation was examined. It was found that almost all Co$_2YZ$ Heusler compounds exhibit half-metallic ferromagnetism. It is also observed that $X$ and $Y$ atoms mainly contribute to the total magnetic moment. The magnitude of the total magnetic moment is determined only indirectly by the nature of $Z$ atoms, and shows a trend consistent with Slater-Pauling behaviour in several classes of these compounds. In contrast to experiments, calculations give a non-integer value of the magnetic moment in certain Co$_2$-based Heusler compounds. To explain deviations of the calculated magnetic moment, the LDA+$U$ scheme was applied and it was found that the inclusion of electron-electron correlation beyond the LSDA and GGA is necessary to obtain theoretical description of some Heusler compounds that are half-metallic ferromagnets. The electronic structure and magnetic properties of substitutional series of the quaternary Heusler compound Co$_2$Mn$_{1-x}$Fe$_x$Si were investigated under LDA+$U$. The calculated band structure suggest that the most stable compound in a half-metallic state will occur at an intermediate Fe concentration. These calculated findings are qualitatively confirmed by experimental studies. Second, the effect of antisite disordering in the Co$_2$TiSn system was investigated theoretically as well as experimentally. Preservation of half-metallicity for Co$_2$TiSn was observed with moderate antisite disordering and experimental findings suggest that the Co and Ti antisites disorder amounts to approximately 10~% in the compound. Third, a systematic examination was carried out for band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18-electron or half-metallic ferromagnet half-Heusler compounds. It was found that the most appropriate description of these compounds from the viewpoint of electronic structures is one of a $YZ$ zinc blende lattice stuffed by the $X$ ion. Simple valence rules are obeyed for bonding in the 8- and 18-electron compounds. Fourth, hexagonal analogues of half-Heusler compounds have been searched. Three series of compounds were investigated: GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP. GdPdSb is suggested as a possible half-metallic weak ferromagnet at low temperature. GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP were investigated because they exhibit interesting bonding, structural and magnetic properties. The results qualitatively confirm experimental studies on magnetic and structural behaviour in GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP compounds. ~
Resumo:
In the last few years, a new generation of Business Intelligence (BI) tools called BI 2.0 has emerged to meet the new and ambitious requirements of business users. BI 2.0 not only introduces brand new topics, but in some cases it re-examines past challenges according to new perspectives depending on the market changes and needs. In this context, the term pervasive BI has gained increasing interest as an innovative and forward-looking perspective. This thesis investigates three different aspects of pervasive BI: personalization, timeliness, and integration. Personalization refers to the capacity of BI tools to customize the query result according to the user who takes advantage of it, facilitating the fruition of BI information by different type of users (e.g., front-line employees, suppliers, customers, or business partners). In this direction, the thesis proposes a model for On-Line Analytical Process (OLAP) query personalization to reduce the query result to the most relevant information for the specific user. Timeliness refers to the timely provision of business information for decision-making. In this direction, this thesis defines a new Data Warehuose (DW) methodology, Four-Wheel-Drive (4WD), that combines traditional development approaches with agile methods; the aim is to accelerate the project development and reduce the software costs, so as to decrease the number of DW project failures and favour the BI tool penetration even in small and medium companies. Integration refers to the ability of BI tools to allow users to access information anywhere it can be found, by using the device they prefer. To this end, this thesis proposes Business Intelligence Network (BIN), a peer-to-peer data warehousing architecture, where a user can formulate an OLAP query on its own system and retrieve relevant information from both its local system and the DWs of the net, preserving its autonomy and independency.
Resumo:
The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.
Resumo:
A study of the pyrolysis and oxidation (phi 0.5-1-2) of methane and methyl formate (phi 0.5) in a laboratory flow reactor (Length = 50 cm, inner diameter = 2.5 cm) has been carried out at 1-4 atm and 300-1300 K temperature range. Exhaust gaseous species analysis was realized using a gas chromatographic system, Varian CP-4900 PRO Mirco-GC, with a TCD detector and using helium as carrier for a Molecular Sieve 5Å column and nitrogen for a COX column, whose temperatures and pressures were respectively of 65°C and 150kPa. Model simulations using NTUA [1], Fisher et al. [12], Grana [13] and Dooley [14] kinetic mechanisms have been performed with CHEMKIN. The work provides a basis for further development and optimization of existing detailed chemical kinetic schemes.
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
In this thesis the evolution of the techno-social systems analysis methods will be reported, through the explanation of the various research experience directly faced. The first case presented is a research based on data mining of a dataset of words association named Human Brain Cloud: validation will be faced and, also through a non-trivial modeling, a better understanding of language properties will be presented. Then, a real complex system experiment will be introduced: the WideNoise experiment in the context of the EveryAware european project. The project and the experiment course will be illustrated and data analysis will be displayed. Then the Experimental Tribe platform for social computation will be introduced . It has been conceived to help researchers in the implementation of web experiments, and aims also to catalyze the cumulative growth of experimental methodologies and the standardization of tools cited above. In the last part, three other research experience which already took place on the Experimental Tribe platform will be discussed in detail, from the design of the experiment to the analysis of the results and, eventually, to the modeling of the systems involved. The experiments are: CityRace, about the measurement of human traffic-facing strategies; laPENSOcosì, aiming to unveil the political opinion structure; AirProbe, implemented again in the EveryAware project framework, which consisted in monitoring air quality opinion shift of a community informed about local air pollution. At the end, the evolution of the technosocial systems investigation methods shall emerge together with the opportunities and the threats offered by this new scientific path.
Resumo:
The aim of the work was to explore the practical applicability of molecular dynamics at different length and time scales. From nanoparticles system over colloids and polymers to biological systems like membranes and finally living cells, a broad range of materials was considered from a theoretical standpoint. In this dissertation five chemistry-related problem are addressed by means of theoretical and computational methods. The main results can be outlined as follows. (1) A systematic study of the effect of the concentration, chain length, and charge of surfactants on fullerene aggregation is presented. The long-discussed problem of the location of C60 in micelles was addressed and fullerenes were found in the hydrophobic region of the micelles. (2) The interactions between graphene sheet of increasing size and phospholipid membrane are quantitatively investigated. (3) A model was proposed to study structure, stability, and dynamics of MoS2, a material well-known for its tribological properties. The telescopic movement of nested nanotubes and the sliding of MoS2 layers is simulated. (4) A mathematical model to gain understaning of the coupled diffusion-swelling process in poly(lactic-co-glycolic acid), PLGA, was proposed. (5) A soft matter cell model is developed to explore the interaction of living cell with artificial surfaces. The effect of the surface properties on the adhesion dynamics of cells are discussed.
Resumo:
Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.
Resumo:
The performance of microchannel heat exchangers was assessed in gas-to-liquid applications in the order of several tens of kWth . The technology is suitable for exhaust heat recovery systems based on organic Rankine cycle. In order to design a light and compact microchannel heat exchanger, an optimization process is developed. The model employed in the procedure is validated through computational fluid-dynamics analysis with commercial software. It is shown that conjugate effects have a significant impact on the heat transfer performance of the device.