879 resultados para Climatic conditions
Resumo:
Aim To evaluate the climate sensitivity of model-based forest productivity estimates using a continental-scale tree-ring network. Location Europe and North Africa (30–70° N, 10° W–40° E). Methods We compiled close to 1000 annually resolved records of radial tree growth for all major European tree species and quantified changes in growth as a function of historical climatic variation. Sites were grouped using a neural network clustering technique to isolate spatiotemporal and species-specific climate response patterns. The resulting empirical climate sensitivities were compared with the sensitivities of net primary production (NPP) estimates derived from the ORCHIDEE-FM and LPJ-wsl dynamic global vegetation models (DGVMs). Results We found coherent biogeographic patterns in climate response that depend upon (1) phylogenetic controls and (2) ambient environmental conditions delineated by latitudinal/elevational location. Temperature controls dominate forest productivity in high-elevation and high-latitude areas whereas moisture sensitive sites are widespread at low elevation in central and southern Europe. DGVM simulations broadly reproduce the empirical patterns, but show less temperature sensitivity in the boreal zone and stronger precipitation sensitivity towards the mid-latitudes. Main conclusions Large-scale forest productivity is driven by monthly to seasonal climate controls, but our results emphasize species-specific growth patterns under comparable environmental conditions. Furthermore, we demonstrate that carry-over effects from the previous growing season can significantly influence tree growth, particularly in areas with harsh climatic conditions – an element not considered in most current-state DGVMs. Model–data discrepancies suggest that the simulated climate sensitivity of NPP will need refinement before carbon-cycle climate feedbacks can be accurately quantified.
Resumo:
Managing land sustainably is a huge challenge, especially under harsh climatic conditions such as those found in drylands. The socio-economic situation can also pose challenges, as dryland regions are often characterized by remoteness, marginality, low-productive farming, weak institutions, and even conflict. With threats from climate change, disputes over water, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) measures will only increase in the future. Within the EU-funded DESIRE project, researchers and stakeholders jointly identified existing SLM technologies and approaches in 17 dryland study sites located in the Mediterranean and around the world. In order to evaluate and share this valuable SLM experience, local researchers documented the SLM technologies and approaches in collaboration with land users, utilizing the internationally recognized WOCAT questionnaires. This article provides an analysis of 30 technologies and 8 approaches, enabling an initial evaluation of how SLM addresses prevalent dryland threats, such as water scarcity, soil degradation, vegetation degradation and low production, climate change, resource use conflicts, and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Favorable local-scale cost–benefit relationships were mainly found when considered over the long term. Nevertheless, SLM was found to improve people’s livelihoods and prevent further outmigration. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.
Resumo:
Local knowledge is crucial to both human development and environmental conservation. This is especially the case in mountain regions, where a combination of remoteness, harsh climatic conditions, rich cultural heritage, and high biological diversity has led to the development of complex local environmental knowledge systems. In the Andes for instance, rural populations mainly rely on their own environmental knowledge to ensure their food security and health. Recent studies conducted within Quechua communities in Peru and Bolivia showed that this knowledge was both persistent and dynamic, and that it responded to socio-economic and environmental changes through cultural resistance and adaptation. As this paper argues, combining local knowledge and so-called scientific knowledge – especially in development projects – can lead to innovative solutions to the socio-environmental challenges facing mountain communities in our globalized world. Based on experiences from the Andes, this paper will provide concrete recommendations to policymakers and practitioners for integrating local knowledge into development and natural resource management initiatives.
Resumo:
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
Resumo:
The late-Holocene shift from Picea glauca (white spruce) to Picea mariana (black spruce) forests marked the establishment of modern boreal forests in Alaska. To understand the patterns and drivers of this vegetational change and the associated late-Holocene environmental dynamics, we analyzed radiocarbon-dated sediments from Grizzly Lake for chironomids, diatoms, pollen, macrofossils, charcoal, element composition, particle size, and magnetic properties for the period 4100–1800 cal BP. Chironomid assemblages reveal two episodes of decreased July temperature, at ca. 3300–3150 (ca −1 °C) and 2900–2550 cal BP (ca −2 °C). These episodes coincided with climate change elsewhere in the Northern Hemisphere, atmospheric reorganization, and low solar activity. Diatom-inferred lake levels dropped by ca. 5 m at 3200 cal BP, suggesting dry conditions during the period 3200–1800 cal BP. P. glauca declined and P. mariana expanded at ca. 3200 cal BP; this vegetational change was linked to diatom-inferred low lake levels and thus decreased moisture availability. Forest cover declined at 3300–3100, 2800–2500 and 2300–2100 cal BP and soil erosion as inferred from increased values of Al, K, Si, Ti, and Ca intensified, when solar irradiance was low. Plant taxa adapted to disturbance and cold climate (e.g. Alnus viridis, shrub Betula, Epilobium) expanded during these periods of reduced forest cover. This open vegetation type was associated with high fire activity that peaked at 2800 cal BP, when climatic conditions were particularly cold and dry. Forest recovery lagged behind subsequent climate warming (≤+3 °C) by ca. 75–225 years. Our multiproxy data set suggests that P. glauca was dominant under warm-moist climatic conditions, whereas P. mariana prevailed under cold-dry and warm-dry conditions. This pattern implies that climatic warming, as anticipated for this century, may promote P. glauca expansions, if moisture availability will be sufficiently high, while P. mariana may expand under dry conditions, possibly exacerbating climate impacts on the fire regime.
Resumo:
Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.
Resumo:
Wildfires are very rare in central Europe, which is probably why fire effects on vegetation have been neglected by most central European ecologists and palaeoecologists. Presently, reconstructions of fire history and fire ecology are almost absent. We analysed sediment cores from lakes on the Swiss Plateau (Lobsigensee and Soppensee) for pollen and charcoal to investigate the relationship between vegetation and fire. Microscopic charcoal evidence suggests increasing regional fire frequencies during the Neolithic (7350-4150 cal. BP, 5400-2200 BC) and the subsequent prehistoric epochs at Lobsigensee, whereas at Soppensee burnings remained rather rare until modern times. Neolithic peaks of charcoal at 6200 and 5500 cal. BP (4250 and 3550 BC) coincided with declines of pollen of fire-sensitive taxa at both sites (e.g., Ulmus, Tilia, Hedera, Fagus), suggesting synchronous vegetational responses to fire at regional scales. However, correlation analysis between charcoal and pollen for the period 6600-4400 cal. BP (4650-2650 BC) revealed no significant link between fire and vegetation at Soppensee, whereas at Lobsigensee increases of Corylus and decreases of Fagus were related to fire events. Fire impact on vegetation increased during the subsequent epochs at both sites. Correlation analyses of charcoal and pollen data for the period 4250-1150 cal. BP (2300 BC -AD 800) suggest that fires were intentionally set to disrupt forests and to provide open areas for arable and pastoral farming (e.g., significant positive correlations between charcoal and Cerealia, Plantago lanceolata, Asteroideae). These results are compared with southern European records (Lago di Origlio, Lago di Muzzano), which are situated in particularly fire-prone environments. After the Mesolithic period (I1 200-7350 cal. BP, 9250-5400 BC), charcoal influx was higher by an order of magnitude in the south, suggesting more frequent fires. Neolithic fires caused similar though more pronounced responses of vegetation in the south (e.g., expansions of Corylus). Post-Neolithic land-use practices involving (controlled) burning culminated in both regions at about 2550 cal. BP (c. 600 BC). However, fire-caused disappearances of entire forest communities were confined to the southern sites. Such differences in fire effects among the sites are explained by the dissimilar importance of fire as a result of different climatic conditions and cultural activities. Our results imply that the remaining (fire-sensitive) fragments of central European vegetation north of the Alps are especially endangered by increasing fire frequencies resulting from predicted climatic change.
Resumo:
The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (CTX and HiRISE) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summer-time temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively “temperate” climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.
Resumo:
Throughout the last millennium, mankind was affected by prolonged deviations from the climate mean state. While periods like the Maunder Minimum in the 17th century have been assessed in greater detail, earlier cold periods such as the 15th century received much less attention due to the sparse information available. Based on new evidence from different sources ranging from proxy archives to model simulations, it is now possible to provide an end-to-end assessment about the climate state during an exceptionally cold period in the 15th century, the role of internal, unforced climate variability and external forcing in shaping these extreme climatic conditions, and the impacts on and responses of the medieval society in Central Europe. Climate reconstructions from a multitude of natural and human archives indicate that, during winter, the period of the early Spörer Minimum (1431–1440 CE) was the coldest decade in Central Europe in the 15th century. The particularly cold winters and normal but wet summers resulted in a strong seasonal cycle that challenged food production and led to increasing food prices, a subsistence crisis, and a famine in parts of Europe. As a consequence, authorities implemented adaptation measures, such as the installation of grain storage capacities, in order to be prepared for future events. The 15th century is characterised by a grand solar minimum and enhanced volcanic activity, which both imply a reduction of seasonality. Climate model simulations show that periods with cold winters and strong seasonality are associated with internal climate variability rather than external forcing. Accordingly, it is hypothesised that the reconstructed extreme climatic conditions during this decade occurred by chance and in relation to the partly chaotic, internal variability within the climate system.
Resumo:
Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC–0 AD), the Medieval Climate Anomaly (MCA) (800–1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400–500 BC, the Late Roman and the Early Medieval periods (0–800 AD) and during the Little Ice Age (1400–1800 AD). Hydrological fluctuations recorded in Butrint are in phase with most central and western Mediterranean records and correlate with NAO variability. In contrast, opposite hydrological patterns have been recorded in the Eastern Balkans and the Levant during the last millennium, emphasizing a complex spatial variability in the region. Phases of maximum settlement intensity in Butrint (Roman-Late Antique) coincide with warmer and/or stable climate periods (0–800 AD and MCA, respectively), indicating a long-term influence of climatic conditions on human activities. The Late Holocene sedimentary record of Lake Butrint demonstrates the complex interplay of climate variability, tectonics and human impact in the recent evolution of coastal Mediterranean regions.
Resumo:
Foresters frequently lack sufficient information about thinning intensity effects to optimize semi-natural forest management and their effects and interaction with climate are still poorly understood. In an Abies pinsapo–Pinus pinaster–Pinus sylvestris forest with three thinning intensities, a dendrochronologial approach was used to evaluate the short-term responses of basal area increment (BAI), carbon isotope (δ13C) and water use efficiency (iWUE) to thinning intensity and climate. Thinning generally increased BAI in all species, except for the heavy thinning in P. sylvestris. Across all the plots, thinning increased 13C-derived water-use efficiency on average by 14.49% for A. pinsapo, 9.78% for P. sylvestris and 6.68% for P. pinaster, but through different ecophysiological mechanisms. Our findings provide a robust mean of predicting water use efficiency responses from three coniferous species exposed to different thinning strategies which have been modulated by climatic conditions over time.
Resumo:
This project is designed to study the N fertilization needs in continuous corn (CC) and corn rotated with soybean (SC) as influenced by location and climate. Multiple rates of fertilizer N are spring applied, with the intent to measure yield response to N within each rotation on a yearly basis for multiple years at multiple sites across Iowa. This will allow the determination of N requirements for each rotation, differences that exist between the two rotations, responses to applied N across different soils and climatic conditions, and evaluation of tools used to adjust N application.