939 resultados para Climatic Variability of the Mediterranean Paleo-circulation
Resumo:
Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.
Resumo:
Because of its relevance for the global climate the Atlantic meridional overturning circulation (AMOC) has been a major research focus for many years. Yet the question of which physical mechanisms ultimately drive the AMOC, in the sense of providing its energy supply, remains a matter of controversy. Here we review both observational data and model results concerning the two main candidates: vertical mixing processes in the ocean's interior and wind-induced Ekman upwelling in the Southern Ocean. In distinction to the energy source we also discuss the role of surface heat and freshwater fluxes, which influence the volume transport of the meridional overturning circulation and shape its spatial circulation pattern without actually supplying energy to the overturning itself in steady state. We conclude that both wind-driven upwelling and vertical mixing are likely contributing to driving the observed circulation. To quantify their respective contributions, future research needs to address some open questions, which we outline.
Resumo:
As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO2. The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant.
Resumo:
The marine stratigraphic record of the Granada Basin (central Betic Cordillera, Spain) is composed of three Late Miocene genetic units deposited in different sea-level contexts (from base to top): Unit I (sea-level rise), Unit II (high sea-level), and Unit III (low sea-level). The latter mainly consists of evaporites precipitated in a shallow-basin setting. Biostratigraphic analyses based on planktonic foraminifera and calcareous nannoplankton indicate four late Tortonian bioevents (PF1-CN1, PF2, PF3, and PF4), which can be correlated with astronomically-dated events in other sections of the Mediterranean. PF1-CN1 (7.89 Ma) is characterized by the influx of the Globorotalia conomiozea group (including typical forms of Globorotalia mediterranea) and by the first common occurrence of Discoaster surculus; PF2 (7.84 Ma) is marked by the first common occurrence of Globorotalia suterae; PF3 (7.69 Ma) is typified by the influx of dextral Neogloboquadrina acostaensis; and PF4 (7.37 Ma) is defined by the influx of the Globorotalia menardii group II (dextral forms). The PF1 event occurred in the upper part of Unit I, whereas PF2 to PF4 events occurred successively within Unit II. The age of Unit III (evaporites) can only be estimated in its lower part based on the presence of dextral Globorotalia scitula, which, together with the absence of the first common occurrence of the G. conomiozea group (7.24 Ma), points to the latest Tortonian. Comparisons with data from the other Betic basins indicate that the evaporitic phase of the Granada Basin (7.37–7.24 Ma) is not synchronous with those from the Lorca Basin (7.80 Ma) and the Fortuna Basin (7.6 Ma). In the Bajo Segura Basin (easternmost Betic Cordillera), no evaporite deposition occurred during the late Tortonian. The evaporitic unit of the Granada Basin (central Betics) records the late Tortonian restriction of the Betic seaway (the marine connection between the Atlantic and Mediterranean). The diachrony in the restriction of the Betic seaway is related to differing tectonic movements in the central and eastern sectors of the Betic Cordillera.
Resumo:
The Bajo Segura Basin (eastern Betic Cordillera) is a Mediterranean marginal basin where the Messinian Erosional Surface (MES), formed during the Messinian Salinity Crisis sea-level fall, is well developed. Overlying this major discontinuity the lower Pliocene transgressive sediments record the reflooding of the Mediterranean and the return to an open marine environment, the continental shelf being rebuilt after the Messinian erosion. The stratigraphic and biostratigraphic study of six sections allows two transgressive-regressive sequences filling the MES to be distinguished, correlated with the previously distinguished Mediterranean offshore seismic units. Ten calcareous nannofossil bioevents have been identified. The lower sequence can be dated according to nannofossil biozones NN12 to NN14 and the upper sequence by NN15 to NN16. The boundary between both lower Pliocene sedimentary sequences occur after the first common occurrence (FCO) of Discoaster asymmetricus found in the uppermost sediments of the lower sequence and before the first occurrence (FO) of Discoaster tamalis in the lowermost part of the upper sequence. Thus this sequence boundary can be estimated at between 4.1 and 4.0Ma ago.
Resumo:
The Paleo- to Meso-Proterozoic Jabiluka unconformity related uranium mine is located within the Alligator River Uranium Field, found in the Northern Territories, Australia. The uranium ore is hosted in the late middle Paleoproterozoic Cahill Formation, which is unconformably overlain by a group of unmetamorphosed conglomerates known as the Kombolgie subgroup. The Kombolgie subgroup provided the source for oxidized basinal brines, carrying U as the mobile form U(VI), which interacted with reducing lithologies in the Cahill formation, thus reducing U(VI) to the solid U(IV), and leading to the precipitation of uraninite (UO2). In order to characterize fluid interaction with the ore body and compare that to areas without mineralization, several isotopic tracers were studied on a series of clay samples from drill core at Jabiluka as well as in barren areas throughout the ARUF. Among the potential tracers, three were selected: U (redox sensitive and recent fluid mobilization), Fe (redox sensitive), and Li (fractionated by hydrothermal fluids and adsorption reactions). δ238U values were found to be closely linked to the mineralogy, with samples with higher K/Al ratios (indicating high illite and low chlorite concentrations) having higher δ238U values. This demonstrates that 235U preferentially absorbs onto the surface of chlorite during hydrothermal circulation. In addition, δ234U values lie far from secular equilibrium (δ234U of 30‰), indicating there was addition or removal of 234U from the surface of the samples from recent (<2.5Ma) interactions of mobile fluids. δ57Fe values were found to be related to lithology and spatially to known uranium deposits. Decreasing δ57Fe values were found with increasing depth to the unconformity in a drill hole directly above the ore zone, but not in drill holes in the barren area. Similarly to δ238U, δ7Li is found to correlate with mineralogy, with higher δ7Li values associated with samples with more chlorite. In addition, higher δ7Li values are found at greater depth throughout the basin, indicating that the direction of the mineralizing fluid circulation was upwards from the Cahill formation to the Kombolgie subgroup.
Resumo:
The Mycenaean Greeks are often assumed to have been in contact with the civilizations of the Mediterranean throughout the Late Bronze Age. The extent of this contact however is not as clearly understood, and the archaeological evidence that has survived provides a sample of what must have exchanged hands. This thesis will examine the archaeological, textual and iconographic evidence from a number of sites and sources, from the Anatolian plains to the Kingdom of Egypt and major settlements in-between during the Late Bronze Age to examine what trade may have looked like for the Mycenaeans. Due to the extensive finds in some regions and a lack of evidence in others, this paper will also try to understand the relationship between the Mycenaeans and other cultures to determine whether a trade embargo was enacted on the Mycenaeans by the Central Anatolian Hittites during this period, or whether other factors contributed to the paucity of objects in Central Anatolia.
Resumo:
Andryala (Asteraceae: Cichorieae) is a little-known Mediterranean-Macaronesian genus whose taxonomy is much in need of revision. The aim of the present biosystematic study was to elucidate species relationships within this genus based on morphological and molecular data. In this study several taxa are recognised: 17 species, 14 subspecies, and 3 hybrids. Among these, 5 species are Macaronesian endemics (A. glandulosa, A. sparsiflora, A. crithmifolia Aiton, A. pinnatifida, and A. perezii), 4 species are Northwest African endemics (A. mogadorensis, A. maroccana, A. chevallieri, and A. nigricans) and one species is endemic to Romania (A. laevitomentosa). Historical background regarding taxonomic delimitation in the genus is addressed from Linnaean to present day concepts, as well as the origin of the name Andryala. The origin of Asteraceae and the systematic position of Andryala is shortly summarised. The morphological study was based on a bibliographic review and the revision of 1066 specimens of 13 herbaria as well as additional material collected during fieldwork. The variability of the morphological characters of the genus, including both vegetative taxonomic characters (root, stem, leaf and indumentum characters) and reproductive ones (inflorescence, floret, fruit and pappus characters), is assessed. Numerical analysis of the morphological data was performed using different similarity or dissimilarity measures and coefficients, as well as ordination and clustering methods. Results support the segregation of the recognised taxa and the congruence of the several analyses in the separation of the recognised taxa (using quantitative, binary or multi-state characters). The proposed taxonomy for Andryala includes a new infra-generic classification, new taxa and new combinations and ranks, typifications and diagnostic keys (one for the species and several for subspecies). For each taxon a list of synonyms, typification comments and a detailed description are provided, just as comments on taxonomy and nomenclature, and a brief discussion on karyology. Additionally, information on ecology and conservation status as well as on distribution and a list of studied material are also presented. Phylogenetic analyses based on different nuclear and chloroplast DNA markers, using Bayesian and maximum parsimony methods of inference, were performed. Results support three main lineages: separate ones for the relict species A. agardhii and A. laevitomentosa and a third including the majority of the Andryala species that underwent a relatively rapid and recent speciation. They also suggest a single colonization event of Madeira and the Canary Islands from the Mediterranean region, followed by insular speciation. Biogeography and speciation within the genus are briefly discussed, including a proposal for the centre of origin of the genus and possible dispersal routes.
Resumo:
Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.
Resumo:
The Messinian was a time of major climatic and paleoceanographic change during the late Cenozoic. It is well known around the Mediterranean region because of the giant anhydritelgypsum sequence and the suggested desiccation of the Mediterranean Sea. However, this interval is less constrained outside the Mediterranean region, where several paleoceanographic changes could have taken place because of the desiccation. Hence, we present an integrated stratigraphic framework for future Messinian paleoceanographic studies, determination of the effect of the Mediterranean desiccation on deep-water paleoceanography, and comparison of intra-Mediterranean paleoceanographic changes with those in the open oceans during the Messinian Stage. Four DSDP/ODP Holes (552A, 646B, 608, and 547A) from the North Atlantic Ocean and one land borehole from Morocco have been studied to integrate bio-, magneto-, and stable isotope Messinian stratigraphy with high resolution sampling. Our results produce the best assessment of the Tortonian/Messinian boundaries in all holes because they do not rely on any one signal. In paleomagnetic Subchronozone C3An1r in the Sale borehole and DSDP Site 609, a S/D coiling direction change of Neogloboquadrina pachyderma/acostaensis appears to indicate PMOW entering the northeastern Atlantic Ocean, at least reaching 50°N. Diachrony and synchrony of some important Messinian planktic foraminifera from these Atlantic DSDP/ODP holes and the Sale borehole, such as the LO of Gq. dehiscens, the LO of Gt. Eenguaensis, the FO and LO of Ct. conomiozea, the FO of Gt. margaritae s.s., the FO of Gt. puncticutata, and the FO of Gt. crassaformis are discussed for understanding some of the paleoceanographic changes. This integrated stratigraphic framework presented here allows much better North Atlantic correlations at this critical point in Messinian geologic history.
Resumo:
Petrographic analysis of Quaternary terrigenous sand layers in eastern Mediterranean cores reveals distinct mineralogical differences between the Egyptian Shelf-Nile Cone region and the southern part of the Mediterranean Ridge. A compositionally and texturally immature suite in Ridge cores, mixed with a Nile-derived assemblage, identifies a fresh non-recycled mineral component derived from proximal igneous and metamorphic surface or near-surface exposures, probably in the south-central Ridge area rather than from distal African sources. The presence of such basement terrains would be consistent with a compressive thrust-belt origin for this part of the Mediterranean Ridge.
Resumo:
The strength and geometry of the Atlantic meridional overturning circulation is tightly coupled to climate on glacial-interglacial and millennial timescales, but has proved difficult to reconstruct, particularly for the Last Glacial Maximum. Today, the return flow from the northern North Atlantic to lower latitudes associated with the Atlantic meridional overturning circulation reaches down to approximately 4,000 m. In contrast, during the Last Glacial Maximum this return flow is thought to have occurred primarily at shallower depths. Measurements of sedimentary 231Pa/230Th have been used to reconstruct the strength of circulation in the North Atlantic Ocean, but the effects of biogenic silica on 231Pa/230Th-based estimates remain controversial. Here we use measurements of 231Pa/230Th ratios and biogenic silica in Holocene-aged Atlantic sediments and simulations with a two-dimensional scavenging model to demonstrate that the geometry and strength of the Atlantic meridional overturning circulation are the primary controls of 231Pa/230Th ratios in modern Atlantic sediments. For the glacial maximum, a simulation of Atlantic overturning with a shallow, but vigorous circulation and bulk water transport at around 2,000 m depth best matched observed glacial Atlantic 231Pa/230Th values. We estimate that the transport of intermediate water during the Last Glacial Maximum was at least as strong as deep water transport today.
Resumo:
This paper constructs a reduction sequence model for north Australian points from the eastern Victoria River region, and identifies a single continuum linking unifacial and bifacial point forms, with some divergence from this single reduction trajectory dependent upon artefact size. Chronological changes in reduction intensity between 5,000BP and the present are found to coincide with typological variation in points as well as changing emphasis on the extendibility of point reduction. It is suggested that changes in the extendibility of point reduction can be linked to intensified ENSO-driven climatic variability in the late Holocene that likely increased economic risk and warranted a substantial technological response, including the use of retouched toolkits with potential for longer use-lives.