971 resultados para Class I cavities
Resumo:
Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide-major histocompatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen.These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.
Resumo:
According to recent crystallographic studies, the TCR-alpha beta contacts MHC class I-bound antigenic peptides via the polymorphic V gene-encoded complementarity-determining region 1 beta (CDR1 beta) and the hypervariable (D)J-encoded CDR3 beta and CDR3 alpha domains. To evaluate directly the relative importance of CDR1 beta polymorphism on the fine specificity of T cell responses in vivo, we have taken advantage of congenic V beta a and V beta b mouse strains that differ by a CDR1 polymorphism in the V beta 10 gene segment. The V beta 10-restricted CD8+ T cell response to a defined immunodominant epitope was dramatically reduced in V beta a compared with V beta b mice, as measured either by the expansion of V beta 10+ cells or by the binding of MHC-peptide tetramers. These data indicate that V beta polymorphism has an important impact on TCR-ligand binding in vivo, presumably by modifying the affinity of CDR1 beta-peptide interactions.
Resumo:
IMPORTANCE: Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS: Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES: Survival, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE: In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.
Resumo:
Natural killer (NK) cellsexpress receptors specific for class I major histocompatibility complex (MHC) molecules. In the mouse, the class I specific receptors identified to date belong to the polymorphic Ly49 receptor family. Engagement of Ly49 receptors with their respective MHC ligands results in negative regulation of NK cell effector functions, consistent with a critical role of these receptors in "missing self" recognition. The Ly49 receptors analyzed so far are clonally distributed such that multiple distinct Ly49 receptors can be expressed by individual NK cells (for review see refs. 1-3). The finding that most NK cells that express the Ly49A receptor do so from a single Ly49A allele (whereby expression can occur from the maternal or the paternal chromosome) may thus reflect a putative receptor distribution process that restricts the number of Ly49 receptors expressed in a single NK cell (3-5).
Resumo:
Purpose: The mechanisms by which CD4+CD25+Foxp3+ T cells (Tregs) regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer and skin transplantation model, we analyzed the in vivo expansion, effector function and trafficking of effector T cells and donor-specific Tregs, in response to an allograft. Methods and materials: Antigen-specific Tregs were generated and expanded in vitro by culturing freshly isolated Tregs from BALB/c mice (H2d) with syngeneic dendritic cells pulsed with an allopeptide (here the Kb peptide derived from the MHC class I molecule of allogeneic H2b mice). Fluorescent-labelled CD4+CD25- naive T cells and donor-antigen-specific Tregs were transferred alone or coinjected into syngeneic BALB/c-Nude recipients transplanted with allogeneic C57BL/6xBALB/c donor skin. Results: As opposed to their in vitro hyporesponsiveness, Tregs divided in vivo, migrated and accumulated in the allograft draining lymph nodes (drLN) and within the graft. The co-transfer of Tregs did not modify the early proliferation and homing of CD4+CD25- T cells to secondary lymphoid organs. But, in the presence of Tregs, effector T cells produced significantly less IFN- and IL-2 effector cytokines, while higher amounts of IL-10 were detected in the spleen and drLN of these mice. Furthermore, time-course studies showed that Tregs were recruited into the allograft at a very early stage posttransplantation and prevented infiltration by effector T cells. Conclusion: Overall, our results suggest that suppression of graft rejection involves the early recruitment of donor-specific Tregs at the sites of antigenic challenge and that Tregs mainly regulate the effector arm of T cell alloresponses.
Resumo:
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.
Resumo:
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.
Resumo:
Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.
Resumo:
Comparison of T cell receptor alpha and beta-chain genes in murine major histocompatibility complex (MHC) class I and class II-restricted T cell clones and hybridomas recognizing different antigens indicates that no simple correlation exists between the observed antigen/MHC specificity and the expression of certain alpha and beta-chain heterodimers. We have attempted to establish a possible correlation by analyzing T cell receptor beta chain gene rearrangements and V beta gene usage in five T cell hybridomas with identical antigen/MHC specificity and another hybridoma recognizing a different antigenic determinant in association with the same restriction molecule. We report here that in each of the five clones a uniquely rearranged beta chain gene is expressed in combination with at least two different V beta gene segments. The presence of the differently rearranged T cell receptor beta chain genes correlated with the finding of distinct fine specificity pattern of antigen recognition in each of the hybridomas. Interestingly, two hybridomas specific for different epitopes showed identical beta chain D-J rearrangements indicating that the differences might be encoded by the alpha chain gene or/and the V beta gene element.
Resumo:
A large percentage of healthy individuals (50-90%) is chronically infected with Cytomegalovirus (CMV). Over the past few years, several techniques were developed in order to monitor CMV-specific T-cell responses. In addition to the identification of antigen-specific T cells with peptide-loaded MHC complexes, most of the current strategies to identify CMV-specific T cells are centered on the assessment of the functions of memory T cells including their ability to mediate effector function, to proliferate or to secrete cytokines following antigen-specific stimulation. The investigation of these functions has allowed the characterization of the CMV-specific T-cell responses that are present during different phases of the infection. Furthermore, it has also been shown that the combination of virus-specific CD4 and CD8 T-cell responses are critical components of the immune response in the control of virus replication.
Resumo:
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.
Resumo:
Gammadelta T cells are implicated in host defense against microbes and tumors but their mode of function remains largely unresolved. Here, we have investigated the ability of activated human Vgamma9Vdelta2(+) T cells (termed gammadelta T-APCs) to cross-present microbial and tumor antigens to CD8(+) alphabeta T cells. Although this process is thought to be mediated best by DCs, adoptive transfer of ex vivo antigen-loaded, human DCs during immunotherapy of cancer patients has shown limited success. We report that gammadelta T-APCs take up and process soluble proteins and induce proliferation, target cell killing and cytokine production responses in antigen-experienced and naïve CD8(+) alphabeta T cells. Induction of APC functions in Vgamma9Vdelta2(+) T cells was accompanied by the up-regulation of costimulatory and MHC class I molecules. In contrast, the functional predominance of the immunoproteasome was a characteristic of gammadelta T cells irrespective of their state of activation. Gammadelta T-APCs were more efficient in antigen cross-presentation than monocyte-derived DCs, which is in contrast to the strong induction of CD4(+) alphabeta T cell responses by both types of APCs. Our study reveals unexpected properties of human gammadelta T-APCs in the induction of CD8(+) alphabeta T effector cells, and justifies their further exploration in immunotherapy research.
Resumo:
BACKGROUND: Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry. METHODS AND RESULTS: The Global Valve-in-Valve Registry included 202 patients with degenerated bioprosthetic valves (aged 77.7±10.4 years; 52.5% men) from 38 cardiac centers. Bioprosthesis mode of failure was stenosis (n=85; 42%), regurgitation (n=68; 34%), or combined stenosis and regurgitation (n=49; 24%). Implanted devices included CoreValve (n=124) and Edwards SAPIEN (n=78). Procedural success was achieved in 93.1% of cases. Adverse procedural outcomes included initial device malposition in 15.3% of cases and ostial coronary obstruction in 3.5%. After the procedure, valve maximum/mean gradients were 28.4±14.1/15.9±8.6 mm Hg, and 95% of patients had ≤+1 degree of aortic regurgitation. At 30-day follow-up, all-cause mortality was 8.4%, and 84.1% of patients were at New York Heart Association functional class I/II. One-year follow-up was obtained in 87 patients, with 85.8% survival of treated patients. CONCLUSIONS: The valve-in-valve procedure is clinically effective in the vast majority of patients with degenerated bioprosthetic valves. Safety and efficacy concerns include device malposition, ostial coronary obstruction, and high gradients after the procedure.
Resumo:
The renormalization properties of gauge-invariant composite operators that vanish when the classical equations of motion are used (class II^a operators) and which lead to diagrams where the Adler-Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do need, in general, nonvanishing gauge-invariant (class I) counterterms.