965 resultados para Chlamydia, Major outer membrane protein, Adoptive transfer
Resumo:
Extracellular fluid macroviscosity (EFM), modified by macromolecular cosolvents as occurs in body fluids, has been shown to affect cell membrane protein activities but not isolated proteins. In search for the mechanism of this phenomenon, we examined the effect of EFM on mechanical fluctuations of the cell membrane of human erythrocytes. The macroviscosity of the external medium was varied by adding to it various macromolecules [dextrans (70, 500, and 2,000 kDa), polyethylene glycol (20 kDa), and carboxymethyl-cellulose (100 kDa)], which differ in size, chemical nature, and in their capacity to increase fluid viscosity. The parameters of cell membrane fluctuations (maximal amplitude and half-width of amplitude distribution) were diminished with the elevation of solvent macroviscosity, regardless of the cosolvent used to increase EFM. Because thermally driven membrane fluctuations cannot be damped by elevation of EFM, the existence of a metabolic driving force is suggested. This is supported by the finding that in ATP-depleted red blood cells elevation of EMF did not affect cell membrane fluctuations. This study demonstrates that (i) EFM is a regulator of membrane dynamics, providing a possible mechanism by which EFM affects cell membrane activities; and (ii) cell membrane fluctuations are driven by a metabolic driving force in addition to the thermal one.
Resumo:
The rat mitochondrial outer membrane-localized benzodiazepine receptor (MBR) was expressed in wild-type and TspO− (tryptophan-rich sensory protein) strains of the facultative photoheterotroph, Rhodobacter sphaeroides 2.4.1, and was shown to retain its structure within the bacterial outer membrane as assayed by its binding properties with a variety of MBR ligands. Functionally, it was able to substitute for TspO by negatively regulating the expression of photosynthesis genes in response to oxygen. This effect was reversed pharmacologically with the MBR ligand PK11195. These results suggest a close evolutionary and functional relationship between the bacterial TspO and the MBR. This relationship provides further support for the origin of the mammalian mitochondrion from a “photosynthetic” precursor. Finally, these findings provide novel insights into the physiological role that has been obscure for the MBR in situ.
Resumo:
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δ cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.
Resumo:
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that underwent palmitoylation approximately 20 min after synthesis. Palmitoylation of the protein coincided with its stable membrane association. Treatment of cells with brefeldin A or other disrupters of transport inhibited palmitoylation of newly synthesized SNAP-25 and abolished membrane association. These results demonstrate that the processing of SNAP-25 and its targeting to the plasma membrane depend on an intact transport mechanism along the exocytic pathway. The kinetics of SNAP-25 palmitoylation and membrane association and the sensitivity of these parameters to brefeldin A suggest a novel trafficking pathway for targeting proteins to the plasma membrane. In vitro, SNAP-25 stably associated with membranes was not released from the membrane after chemical deacylation. We propose that palmitoylation of SNAP-25 is required for initial membrane targeting of the protein but that other interactions can maintain membrane association in the absence of fatty acylation.
Resumo:
The amino acid sequence requirements of the transmembrane (TM) domain and cytoplasmic tail (CT) of the hemagglutinin (HA) of influenza virus in membrane fusion have been investigated. Fusion properties of wild-type HA were compared with those of chimeras consisting of the ectodomain of HA and the TM domain and/or CT of polyimmunoglobulin receptor, a nonviral integral membrane protein. The presence of a CT was not required for fusion. But when a TM domain and CT were present, fusion activity was greater when they were derived from the same protein than derived from different proteins. In fact, the chimera with a TM domain of HA and truncated CT of polyimmunoglobulin receptor did not support full fusion, indicating that the two regions are not functionally independent. Despite the fact that there is wide latitude in the sequence of the TM domain that supports fusion, a point mutation of a semiconserved residue within the TM domain of HA inhibited fusion. The ability of a foreign TM domain to support fusion contradicts the hypothesis that a pore is composed solely of fusion proteins and supports the theory that the TM domain creates fusion pores after a stage of hemifusion has been achieved.
Resumo:
The split-Ubiquitin (split-Ub) technique was used to map the molecular environment of a membrane protein in vivo. Cub, the C-terminal half of Ub, was attached to Sec63p, and Nub, the N-terminal half of Ub, was attached to a selection of differently localized proteins of the yeast Saccharomyces cerevisiae. The efficiency of the Nub and Cub reassembly to the quasi-native Ub reflects the proximity between Sec63-Cub and the Nub-labeled proteins. By using a modified Ura3p as the reporter that is released from Cub, the local concentration between Sec63-Cub-RUra3p and the different Nub-constructs could be translated into the growth rate of yeast cells on media lacking uracil. We show that Sec63p interacts with Sec62p and Sec61p in vivo. Ssh1p is more distant to Sec63p than its close sequence homologue Sec61p. Employing Nub- and Cub-labeled versions of Ste14p, an enzyme of the protein isoprenylation pathway, we conclude that Ste14p is a membrane protein of the ER. Using Sec63p as a reference, a gradient of local concentrations of different t- and v-SNARES could be visualized in the living cell. The RUra3p reporter should further allow the selection of new binding partners of Sec63p and the selection of molecules or cellular conditions that interfere with the binding between Sec63p and one of its known partners.
Resumo:
The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin–Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.
Resumo:
Stearoyl-coenzyme A desaturase (SCD) is a key regulator of membrane fluidity, turns over rapidly, and represents a prototype for selective degradation of resident proteins of the endoplasmic reticulum. Using detergent-solubilized, desaturase-induced rat liver microsomes we have characterized a protease that degrades SCD. Degradation of SCD in vitro is highly selective, has a half-life of 3–4 h, and generates a 20-kDa C-terminal fragment of SCD. The N terminus of the 20-kDa fragment was identified as Phe177. The cleavage site occurs in a conserved 12-residue hydrophobic segment of SCD flanked by clusters of basic residues. The SCD protease remains associated with microsomal membranes after peripheral and lumenal proteins have been selectively removed. SCD protease is present in normal rat liver microsomes and cleaves purified SCD. We conclude that rapid turnover of SCD involves a constitutive microsomal protease with properties of an integral membrane protein.
Resumo:
Distinct lipid compositions of intracellular organelles could provide a physical basis for targeting of membrane proteins, particularly where transmembrane domains have been shown to play a role. We tested the possibility that cholesterol is required for targeting of membrane proteins to the Golgi complex. We used insect cells for our studies because they are cholesterol auxotrophs and can be depleted of cholesterol by growth in delipidated serum. We found that two well-characterized mammalian Golgi proteins were targeted to the Golgi region of Aedes albopictus cells, both in the presence and absence of cellular cholesterol. Our results imply that a cholesterol gradient through the secretory pathway is not required for membrane protein targeting to the Golgi complex, at least in insect cells.
Resumo:
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.
Resumo:
Pichia pastoris PEX17 was cloned by complementation of a peroxisome-deficient strain obtained from a novel screen for mutants disrupted in the localization of a peroxisomal membrane protein (PMP) reporter. PEX17 encodes a 267-amino-acid protein with low identity (18%) to the previously characterized Saccharomyces cerevisiae Pex17p. Like ScPex17p, PpPex17p contains a putative transmembrane domain near the amino terminus and two carboxyl-terminal coiled-coil regions. PpPex17p behaves as an integral PMP with a cytosolic carboxyl-terminal domain. pex17Δ mutants accumulate peroxisomal matrix proteins and certain integral PMPs in the cytosol, suggesting a critical role for Pex17p in their localization. Peroxisome remnants were observed in the pex17Δ mutant by morphological and biochemical means, suggesting that Pex17p is not absolutely required for remnant formation. Yeast two-hybrid analysis demonstrated that the carboxyl terminus of Pex19p was required for interaction with Pex17p lacking the carboxyl-terminal coiled-coil domains. Biochemical evidence confirmed the interaction between Pex19p and Pex17p. Additionally, Pex17p cross-linked to components of the peroxisome targeting signal–receptor docking complex, which unexpectedly contained Pex3p. Our evidence suggests the existence of distinct subcomplexes that contain separable pools of Pex3p, Pex19p, Pex17p, Pex14p, and the peroxisome targeting signal receptors. These distinct pools may serve different purposes for the import of matrix proteins or PMPs.
Resumo:
Activated terminal complement proteins C5b to C9 form the membrane attack complex (MAC) pore. Insertion of the MAC into endothelial cell membranes causes the release of growth factors that stimulate tissue growth and proliferation. The complement regulatory membrane protein CD59 restricts MAC formation. Because increased cell proliferation characterizes the major chronic vascular complications of human diabetes and because increased glucose levels in diabetes cause protein glycation and impairment of protein function, we investigated whether glycation could inhibit CD59. Glycation-inactivation of CD59 would cause increased MAC deposition and MAC-stimulated cell proliferation. Here, we report that (i) human CD59 is glycated in vivo, (ii) glycated human CD59 loses its MAC-inhibitory function, and (iii) inactivation of CD59 increases MAC-induced growth factor release from endothelial cells. We demonstrate by site-directed mutagenesis that residues K41 and H44 form a preferential glycation motif in human CD59. The presence of this glycation motif in human CD59, but not in CD59 of other species, may help explain the distinct propensity of humans to develop vascular proliferative complications of diabetes.
Resumo:
Mammalian electron transfer flavoproteins (ETF) are heterodimers containing a single equivalent of flavin adenine dinucleotide (FAD). They function as electron shuttles between primary flavoprotein dehydrogenases involved in mitochondrial fatty acid and amino acid catabolism and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. The structure of human ETF solved to 2.1-Å resolution reveals that the ETF molecule is comprised of three distinct domains: two domains are contributed by the α subunit and the third domain is made up entirely by the β subunit. The N-terminal portion of the α subunit and the majority of the β subunit have identical polypeptide folds, in the absence of any sequence homology. FAD lies in a cleft between the two subunits, with most of the FAD molecule residing in the C-terminal portion of the α subunit. Alignment of all the known sequences for the ETF α subunits together with the putative FixB gene product shows that the residues directly involved in FAD binding are conserved. A hydrogen bond is formed between the N5 of the FAD isoalloxazine ring and the hydroxyl side chain of αT266, suggesting why the pathogenic mutation, αT266M, affects ETF activity in patients with glutaric acidemia type II. Hydrogen bonds between the 4′-hydroxyl of the ribityl chain of FAD and N1 of the isoalloxazine ring, and between αH286 and the C2-carbonyl oxygen of the isoalloxazine ring, may play a role in the stabilization of the anionic semiquinone. With the known structure of medium chain acyl-CoA dehydrogenase, we hypothesize a possible structure for docking the two proteins.
Resumo:
A major physiological role of insulin is the regulation of glucose uptake into skeletal and cardiac muscle and adipose tissue, mediated by an insulin-stimulated translocation of GLUT4 glucose transporters from an intracellular vesicular pool to the plasma membrane. This process is similar to the regulated docking and fusion of vesicles in neuroendocrine cells, a process that involves SNARE-complex proteins. Recently, several SNARE proteins were found in adipocytes: vesicle-associated membrane protein (VAMP-2), its related homologue cellubrevin, and syntaxin-4. In this report we show that treatment of permeabilized 3T3-L1 adipocytes with botulinum neurotoxin D, which selectively cleaves VAMP-2 and cellubrevin, inhibited the ability of insulin to stimulate translocation of GLUT4 vesicles to the plasma membrane. Furthermore, treatment of the permeabilized adipocytes with glutathione S-transferase fusion proteins encoding soluble forms of VAMP-2 or syntaxin-4 also effectively blocked insulin-regulated GLUT4 translocation. These results provide evidence of a functional role for SNARE-complex proteins in insulin-stimulated glucose uptake and suggest that adipocytes utilize a mechanism of regulating vesicle docking and fusion analogous to that found in neuroendocrine tissues.
Resumo:
In the yeast, Saccharomyces cerevisiae, oligosaccharyl transferase (OT), which catalyzes the transfer of dolichol-linked oligosaccharide chains to nascent polypeptides in the endoplasmic reticulum, consists of nine nonidentical membrane protein subunits. Genetic and biochemical evidence indicated these nine proteins exist in three subcomplexes. Three of the OT subunits (Ost4p, Ost3p, and Stt3p) have been proposed to exist in one subcomplex. To investigate the interaction of these three membrane proteins, initially we carried out a mutational analysis of Ost4p, which is an extraordinarily small membrane protein containing only 36 amino acid residues. This analysis indicated that when single amino acid residues in a region close to the luminal face of the putative transmembrane domain of Ost4p were changed into an ionizable amino acid such as Lys or Asp, growth at 37°C and OT activity measured in vitro were impaired. In addition, using immunoprecipitation techniques and Western blot analysis, we found that with these mutations the interaction between Ost4p, Ost3p, and Stt3p was disrupted. Introduction of Lys or Asp residues at other positions in the putative transmembrane domain or at the N or C terminus of Ost4p had no effect on disrupting subunit interactions or impairing the activity of OT. These findings suggest that a localized region of the putative transmembrane domain of Ost4p mediates in stabilization of the interaction with the two other OT subunits (Ost3p and Stt3p) in a subcomplex in the endoplasmic reticulum membrane.