909 resultados para Chipless RFID tag
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
Smartphones and other internet enabled devices are now common on our everyday life, thus unsurprisingly a current trend is to adapt desktop PC applications to execute on them. However, since most of these applications have quality of service (QoS) requirements, their execution on resource-constrained mobile devices presents several challenges. One solution to support more stringent applications is to offload some of the applications’ services to surrogate devices nearby. Therefore, in this paper, we propose an adaptable offloading mechanism which takes into account the QoS requirements of the application being executed (particularly its real-time requirements), whilst allowing offloading services to several surrogate nodes. We also present how the proposed computing model can be implemented in an Android environment
Resumo:
Knowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables, nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA.
Resumo:
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.
Resumo:
Consider the problem of scheduling a set of sporadic tasks on a multiprocessor system to meet deadlines using a task-splitting scheduling algorithm. Task-splitting (also called semi-partitioning) scheduling algorithms assign most tasks to just one processor but a few tasks are assigned to two or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors simultaneously. A particular type of task-splitting algorithms, called slot-based task-splitting dispatching, is of particular interest because of its ability to schedule tasks with high processor utilizations. Unfortunately, no slot-based task-splitting algorithm has been implemented in a real operating system so far. In this paper we discuss and propose some modifications to the slot-based task-splitting algorithm driven by implementation concerns, and we report the first implementation of this family of algorithms in a real operating system running Linux kernel version 2.6.34. We have also conducted an extensive range of experiments on a 4-core multicore desktop PC running task-sets with utilizations of up to 88%. The results show that the behavior of our implementation is in line with the theoretical framework behind it.
Resumo:
Consider the problem of scheduling a set of sporadic tasks on a multiprocessor system to meet deadlines using a tasksplitting scheduling algorithm. Task-splitting (also called semipartitioning) scheduling algorithms assign most tasks to just one processor but a few tasks are assigned to two or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors simultaneously. A certain type of task-splitting algorithms, called slot-based task-splitting, is of particular interest because of its ability to schedule tasks at high processor utilizations. We present a new schedulability analysis for slot-based task-splitting scheduling algorithms that takes the overhead into account and also a new task assignment algorithm.
Resumo:
Several projects in the recent past have aimed at promoting Wireless Sensor Networks as an infrastructure technology, where several independent users can submit applications that execute concurrently across the network. Concurrent multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated by traditional schemes optimized for single-application scenarios. In this paper, we outline two main optimization techniques for reducing power consumption across applications. First, we describe a compiler based approach that identifies redundant sensing requests across applications and eliminates those. Second, we cluster the radio transmissions together by concatenating packets from independent applications based on Rate-Harmonized Scheduling.
Resumo:
In this paper we consider global fixed-priority preemptive multiprocessor scheduling of constrained-deadline sporadic tasks that share resources in a non-nested manner. We develop a novel resource-sharing protocol and a corresponding schedulability test for this system. We also develop the first schedulability analysis of priority inheritance protocol for the aforementioned system. Finally, we show that these protocols are efficient (based on the developed schedulability tests) for a class of priority-assignments called reasonable priority-assignments.
Resumo:
Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
Database query languages on relations (for example SQL) make it possible to join two relations. This operation is very common in desktop/server database systems but unfortunately query processing systems in networked embedded computer systems currently do not support this operation; specifically, the query processing systems TAG, TinyDB, Cougar do not support this. We show how a prioritized medium access control (MAC) protocol can be used to efficiently execute the database operation join for networked embedded computer systems where all computer nodes are in a single broadcast domain.
Resumo:
The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.