944 resultados para Charm in matter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Although vancomycin-resistant enterococci (VRE) are reported in Brazil since 1996, data on their impact over settings of different complexity are scarce. We performed a study aimed at identifying determinants ofVRE emergence and spread in a public hospital consortium (comprising 2 hospitals, with 318 and 57 beds) in inner Brazil. Molecular typing and case-control studies (addressing predictors of acquisition or clonality) were performed. Among 122 authocthonous isolates, 106 were Enterococcus faecium (22 clones), and 16, Enterococcus faecalis (5 clones). Incidence was greater in the small-sized hospital, and a previous admission to this hospital was associated with greater risk of VRE colonization or infection during admission to the larger one. Overall risk factors included comorbidities, procedures, and antimicrobials (piperacillin-tazobactam, cefepime, and imipenem). Risk factors varied among different hospitals, species, and clones. Our findings demonstrate that VRE can spread within low-complexity facilities and from these to larger hospitals. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The ubiquitous presence of dark matter in the Universe is today a central tenet in modern cosmology and astrophysics(1). Throughout the Universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood(2). Here we present an up-to-date compilation of Milky Way rotation curve measurements(3-13), and compare it with state-of-the-art baryonic mass distribution models(14-26). We show that current data strongly disfavour baryons as the sole contribution to the Galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy without making any assumptions about its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will help reveal the structure and evolution of the Galaxy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)