995 resultados para Charge relative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.

Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.

Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.

When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.

The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DC and transient measurements of space-charge-limited currents through alloyed and symmetrical n^+ν n^+ structures made of nominally 75 kΩcm ν-type silicon are studied before and after the introduction of defects by 14 MeV neutron radiation. In the transient measurements, the current response to a large turn-on voltage step is analyzed. Right after the voltage step is applied, the current transient reaches a value which we shall call "initial current" value. At longer times, the transient current decays from the initial current value if traps are present.

Before the irradiation, the initial current density-voltage characteristics J(V) agree quantitatively with the theory of trap-free space-charge-limited current in solids. We obtain for the electron mobility a temperature dependence which indicates that scattering due to impurities is weak. This is expected for the high purity silicon used. The drift velocity-field relationships for electrons at room temperature and 77°K, derived from the initial current density-voltage characteristics, are shown to fit the relationships obtained with other methods by other workers. The transient current response for t > 0 remains practically constant at the initial value, thus indicating negligible trapping.

Measurement of the initial (trap-free) current density-voltage characteristics after the irradiation indicates that the drift velocity-field relationship of electrons in silicon is affected by the radiation only at low temperature in the low field range. The effect is not sufficiently pronounced to be readily analyzed and no formal description of it is offered. In the transient response after irradiation for t > 0, the current decays from its initial value, thus revealing the presence of traps. To study these traps, in addition to transient measurements, the DC current characteristics were measured and shown to follow the theory of trap-dominated space-charge-limited current in solids. This theory was applied to a model consisting of two discrete levels in the forbidden band gap. Calculations and experiments agreed and the capture cross-sections of the trapping levels were obtained. This is the first experimental case known to us through which the flow of space-charge-limited current is so simply representable.

These results demonstrate the sensitivity of space-charge-limited current flow as a tool to detect traps and changes in the drift velocity-field relationship of carriers caused by radiation. They also establish that devices based on the mode of space-charge-limited current flow will be affected considerably by any type of radiation capable of introducing traps. This point has generally been overlooked so far, but is obviously quite significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 ≤ Z ≤ 28) and energy spectra (5 to 15 MeV /nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements.

The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 ≤ Z ≤ 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events.

The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: The elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events.

The four-flare average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggests that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elements with even atomic number (Z) in the interval 50 ≤ Z ≤ 58 have been resolved in the cosmic radiation using the Heavy Nuclei Experiment on the HEAO-3 satellite. Their relative abundances have been compared with the results expected from pure r-process material, pure s-process material, and solar system material, both with and without a modification due to possible first ionization potential effects. Such effects may be the result of the preferential acceleration, and hence enhancement in the cosmic rays, or those elements having low first ionization potentials. We find that our measurements are inconsistent with pure r-process material at the greater than 98% confidence level whether or not the first ionization potential adjustments are made.

In addition, we have compared our results with mixtures having varying ratios of pure r-process material to pure s-process material. We find that, if no first ionization potential effects are included,

(r/s)CRS/(r/s)SS = 0.20+0.18-0.14

where CRS refers to the cosmic ray source and SS refers to the solar system, consistent with having an almost pure s-process source. If the first ionization potential adjustments are applied

(r/s)CRS/(r/s)SS = 1.5+1.1-0.7

consistent with a solar system mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of solar energetic particles (SEPs) from 22 solar flares in the 1977-1982 time period are reported. The observations were made by the Cosmic Ray Subsystem on board the Voyager 1 and 2 spacecraft. SEP abundances have been obtained for all elements with 3 ≤ Z ≤ 30 except Li, Be, B. F, Sc, V, Co and Cu. for which upper limits have been obtained. Statistically meaningful abundances of several rare elements (e.g., P, Cl, K, Ti, Mn) have been determined for the first time, and the average abundances of the more abundant elements have been determined with improved precision, typically a factor of three better than the best previous determinations.

Previously reported results concerning the dependence of the fractionation of SEPs relative to photosphere on first ionization potential (FIP) have been confirmed and amplified upon with the new data. The monotonic Z-dependence of the variation between flares noted by earlier studies was found to be interpretable as a fractionation, produced by acceleration of the particles from the corona and their propagation through interplanetary space, which is ordered by the ionic charge-to-mass ratio Q/ M of the species making up the SEPs. It was found that Q/M is the primary organizing parameter of acceleration and propagation effects in SEPs, as evidenced by the dependence on Q/M of time, spatial and energy dependence within flares and of the abundance variability from flare to flare.

An unfractionated coronal composition was derived by applying a simple Q/M fractionation correction to the observed average SEP composition, to simultaneously correct for all Q/M-correlated acceleration/propagation fractionation of SEPs. The resulting coronal composition agrees well with current XUV/X-ray spectroscopic measurements of coronal composition but is of much higher precision and is available for a much larger set of elements. Compared to spectroscopic photospheric abundances, the SEP-derived corona appears depleted in C and somewhat enriched in Cr (and possibly Ca and Ti).

An unfractionated photospheric composition was derived by applying a simple FIP fractionation correction to the derived coronal composition, to correct for the FIP-associated fractionation of the corona during its formation from photospheric material. The resulting composition agrees well with the photospheric abundance tabulation of Grevesse (1984) except for an at least 50% lower abundance of C and a significantly greater abundance of Cr and possibly Ti. The results support the Grevesse photospheric Fe abundance, about 50% higher than meteoritic and earlier solar values. The SEP-derived photospheric composition is not generally of higher precision than the available spectroscopic data, but it relies on fewer physical parameters and is available for some elements (C, N, Ne, Ar) which cannot be measured spectroscopically in the photosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the data from the Heavy Nuclei Experiment on the HEAO-3 spacecraft has yielded the cosmic ray abundances of odd-even element pairs with atomic number, Z, in the range 33 ≤ Z ≤60, and the abundances of broad element groups in the range 62 ≤ Z ≤83, relative to iron. These data show that the cosmic ray source composition in this charge range is quite similar to that of the solar system provided an allowance is made for a source fractionation based on first ionization potential. The observations are inconsistent with a source composition which is dominated by either r-process or s-process material, whether or not an allowance is made for first ionization potential. Although the observations do not exclude a source containing the same mixture of r- and s-process material as in the solar system. the data are best fit by a source having an r- to s-process ratio of 1.22^(+0.25)_(0.21), relative to the solar system The abundances of secondary elements are consistent with the leaky box model of galactic propagation, implying a pathlength distribution similar to that which explains the abundances of nuclei with Z<29.

The energy spectra of the even elements in the range 38 ≤ Z ≤ 60 are found to have a deficiency of particles in the range ~1.5 to 3 GeV/amu, compared to iron. This deficiency may result from ionization energy loss in the interstellar medium, and is not predicted by propagation models which ignore such losses. ln addition, the energy spectra of secondary elements are found to be different to those of the primary elements. Such effects are consistent with observations of lighter nuclei, and are in qualitative agreement with galactic propagation models using a rigidity dependent escape length. The energy spectra of secondaries arising from the platinum group are found to be much steeper than those of lower Z. This effect may result from energy dependent fragmentation cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we

•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;

•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;

•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;

•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;

•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.

The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we

•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;

•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.

The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA possesses the curious ability to conduct charge longitudinally through the π-stacked base pairs that reside within the interior of the double helix. The rate of charge transport (CT) through DNA has a shallow distance dependence. DNA CT can occur over at least 34 nm, a very long molecular distance. Lastly, DNA CT is exquisitely sensitive to disruptions, such as DNA damage, that affect the dynamics of base-pair stacking. Many DNA repair and DNA-processing enzymes are being found to contain 4Fe-4S clusters. These co-factors have been found in glycosylases, helicases, helicase-nucleases, and even enzymes such as DNA polymerase, RNA polymerase, and primase across the phylogeny. The role of these clusters in these enzymes has remained elusive. Generally, iron-sulfur clusters serve redox roles in nature since, formally, the cluster can exist in multiple oxidation states that can be accessed within a biological context. Taken together, these facts were used as a foundation for the hypothesis that DNA-binding proteins with 4Fe-4S clusters utilize DNA-mediated CT as a means to signal one another to scan the genome as a first step in locating the subtle damage that occurs within a sea of undamaged bases within cells.

Herein we describe a role for 4Fe-4S clusters in DNA-mediated charge transport signaling among EndoIII, MutY, and DinG, which are from distinct repair pathways in E. coli. The DinG helicase is an ATP-dependent helicase that contains a 4Fe-4S cluster. To study the DNA-bound redox properties of DinG, DNA-modified electrochemistry was used to show that the 4Fe-4S cluster of DNA-bound DinG is redox-active at cellular potentials, and shares the 80 mV vs. NHE redox potential of EndoIII and MutY. ATP hydrolysis by DinG increases the DNA-mediated redox signal observed electrochemically, likely reflecting better coupling of the 4Fe-4S cluster to DNA while DinG unwinds DNA, which could have interesting biological implications. Atomic force microscopy experiments demonstrate that DinG and EndoIII cooperate at long range using DNA charge transport to redistribute to regions of DNA damage. Genetics experiments, moreover, reveal that this DNA-mediated signaling among proteins also occurs within the cell and, remarkably, is required for cellular viability under conditions of stress. Knocking out DinG in CC104 cells leads to a decrease in MutY activity that is rescued by EndoIII D138A, but not EndoIII Y82A. DinG, thus, appears to help MutY find its substrate using DNA-mediated CT, but do MutY or EndoIII aid DinG in a similar way? The InvA strain of bacteria was used to observe DinG activity, since DinG activity is required within InvA to maintain normal growth. Silencing the gene encoding EndoIII in InvA results in a significant growth defect that is rescued by the overexpression of RNAseH, a protein that dismantles the substrate of DinG, R-loops. This establishes signaling between DinG and EndoIII. Furthermore, rescue of this growth defect by the expression of EndoIII D138A, the catalytically inactive but CT-proficient mutant of EndoIII, is also observed, but expression of EndoIII Y82A, which is CT-deficient but enzymatically active, does not rescue growth. These results provide strong evidence that DinG and EndoIII utilize DNA-mediated signaling to process DNA damage. This work thus expands the scope of DNA-mediated signaling within the cell, as it indicates that DNA-mediated signaling facilitates the activities of DNA repair enzymes across the genome, even for proteins from distinct repair pathways.

In separate work presented here, it is shown that the UvrC protein from E. coli contains a hitherto undiscovered 4Fe-4S cluster. A broad shoulder at 410 nm, characteristic of 4Fe-4S clusters, is observed in the UV-visible absorbance spectrum of UvrC. Electron paramagnetic resonance spectroscopy of UvrC incubated with sodium dithionite, reveals a spectrum with the signature features of a reduced, [4Fe-4S]+1, cluster. DNA-modified electrodes were used to show that UvrC has the same DNA-bound redox potential, of ~80 mV vs. NHE, as EndoIII, DinG, and MutY. Again, this means that these proteins are capable of performing inter-protein electron transfer reactions. Does UvrC use DNA-mediated signaling to facilitate the repair of its substrates?

UvrC is part of the nucleotide excision repair (NER) pathway in E. coli and is the protein within the pathway that performs the chemistry required to repair bulky DNA lesions, such as cyclopyrimidine dimers, that form as a product of UV irradiation. We tested if UvrC utilizes DNA-mediated signaling to facilitate the efficient repair of UV-induced DNA damage products by helping UvrC locate DNA damage. The UV sensitivity of E. coli cells lacking DinG, a putative signaling partner of UvrC, was examined. Knocking out DinG in E. coli leads to a sensitivity of the cells to UV irradiation. A 5-10 fold reduction in the amount of cells that survive after irradiation with 90 J/m2 of UV light is observed. This is consistent with the hypothesis that UvrC and DinG are signaling partners, but is this signaling due to DNA-mediated CT? Complementing the knockout cells with EndoIII D138A, which can also serve as a DNA CT signaling partner, rescues cells lacking DinG from UV irradiation, while complementing the cells with EndoIII Y82A shows no rescue of viability. These results indicate that there is cross-talk between the NER pathway and DinG via DNA-mediated signaling. Perhaps more importantly, this work also establishes that DinG, EndoIII, MutY, and UvrC comprise a signaling network that seems to be unified by the ability of these proteins to perform long range DNA-mediated CT signaling via their 4Fe-4S clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bottom trawl surveys were conducted in Kenyan waters of Lake Victoria during the period September 1997 and March 1999. The means of fish biomass for the two most important species: Lates niloticus (L.) and Oreochromis niloticus (L.) were estimated at 61.5 kg ha and 4.5 kg ha respectively. There were few L. niloticus greater than 80 cm TL and O. niloticus greater than 50 cm TL, though these species attain maximum sizes of 205 cm and 65 cm respectively. Oreochromis niloticus was mostly found shallower than 5 m though some specimens were encountered deeper than 10 m, suggesting that the species has extended its ecological range. Very low catches were obtained from areas under water hyacinth cover. Water in such areas was turbid with oxygen levels below the critical 3.0 mg L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.

The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.

The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.

In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.

The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent surveys have indicated an increase in haplochromine biomass recorded from the bottom trawl and in the beam trawl. The haplochromines recovering in the offshore waters belong to three species in the zooplanktivorous trophic group: Yssichromis laparogramma (Greenwood and Gee), Yssichromis fusiformis (Greenwood and Gee) and Astatotilapia lacrimosa (Boulenger). In this paper, the species composition and relative abundance of the zooplanktivorous haplochromines recorded from the bottom and frame trawl surveys in the various parts of the Ugandan waters of Lake Victoria are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-photon absorption effect (3PA) of two novel symmetrical charge transfer fluorene-based molecules (abbreviated as BASF and BMOSF) has been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 84 x 10(-78) and 114 x 10(-78) cm(6) s(2), respectively. The geometries and electronic excitations of these two molecules are systematically studied by PM3 and ZINDO/S methods. The relationships between 3PA cross-sections and intramolecular charge transfer are discussed micromechanically. The experimental and theoretical results have shown that the larger intramolecular charge transfer, which was characterized by the charge density difference between the ground state (SO) and the first excited state (S-I), the greater enhancement of the 3PA cross-sections. (c) 2005 Elsevier B.V. All rights reserved.