890 resultados para Ceramic Compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to determine the ability of specifically adapted bacteria to degrade phenol and to quantify the rate of biodegradation at. Different concentrations by mixed as well as individual isolates. Regular quantitative analysis of phenolics and aerobic phenololytic heterotrophs from five different ecosystems were done during 1990-1991, and the ability of microorganisms isolated from those areas, to utilize phenol, o-cresol and orcinol was also studied. In addition, data on environmental parameters like temperature, dissolved oxygen, salinity, pH, organic carbon and nutrients were also collected during the period of study The present study is one of its first kind in natural aquatic environment and has aimed to bring out some idea about the potential phenol biodegrades in such environments where the phenol concentration is beyond permitted level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational overtone spectroscopy of X-H (X=C,N,O) containing molecules is an area of recent interest. The spectroscopic studies of higher vibrational levels yield valuable informations, regarding,the molecular structure, intra- and inter-molecular interactions, radiationless transitions, intra-molecular vibrational relaxations, multiphoton excitations and chemical reactivities, which cannot be z obtained by other spectroscopic methods. This thesis presents the results of experimental investigations on the overtone spectra of some organic compounds in the liquid phase for the characterization of CH bonds. The spectra in the fifth overtone region (1fiV=6) are recorded using a dual beam thermal lens setup and the lower overtones (.AV=2-5) are recorded spectrophotometrically.The thesis is presented in six chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work different new approaches for the synthesis of Vitamin A are investigated. In these synthetic schemes, all the twenty carbon atoms of the target molecule are derived either fully from components isolated from common essential oils or partially from commercially available materials. By retrosynthetic analysis, Vitamin A molecule can be disconnected into a cyclic and a linear unit. Different methods for the synthesis of the linear and the cyclic components are described. The monoterpenes, geraniol and citral, major constituents of palmarosa and lemongrass oils, have the required basic carbon framework for consideration as starting materials for the synthesis of Vitamin A. The potential of these easily available naturally occurring compounds as promising starting materials for Vitamin A synthesis is demonstrated. Organoselenium and organosulfur mediated functional group transformations for the synthesis of the functionalised conjugated C10 linear components (ie., the dimethyloctatriene derivatives) are reported. The classical approaches as well as the attempted preparation of cyclic C10 and C13 units employed in the present study as intermediates for Vitamin A synthesis are described. The utility of commercially available materials namely 2-acetylbutyrolactone and levulinic acid in -the preparation of C5 intermediates for Vitamin A synthesis is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results are presented of a combined periodic and cluster model approach to the electronic structure and magnetic interactions in the spin-chain compounds Ca2CuO3 and Sr2CuO3. An extended t-J model is presented that includes in-chain and interchain hopping and magnetic interaction processes with parameters extracted from ab initio calculations. For both compounds, the in-chain magnetic interaction is found to be around -240 meV, larger than in any of the other cuprates reported in the literature. The interchain magnetic coupling is found to be weakly antiferromagnetic, -1 meV. The effective in-chain hopping parameters are estimated to be ~650 meV for both compounds, whereas the value of the interchain hopping parameter is 30 meV for Sr2CuO3 and 40 meV for Ca2CuO3, in line with the larger interchain distance in the former compound. These effective parameters are shown to be consistent with expressions recently suggested for the Néel temperature and the magnetic moments, and with relations that emerge from the t-J model Hamiltonian. Next, we investigate the physical nature of the band gap. Periodic calculations indicate that an interpretation in terms of a charge-transfer insulator is the most appropriate one, in contrast to the suggestion of a covalent correlated insulator recently reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid electrolytes for applications like chemical sensing, energy storage, and conversion have been actively investigated and developed since the early sixties. Although of immense potential, solid state protonic conductors have been ignored in comparison with the great interest that has been shown to other ionic conductors like lithium and silver ion conductors. The non-availability of good, stable protonic conductors could be partly the reason for this situation. Although organic solids are better known for their electrical insulating character, ionic conductors of organic origin constitute a recent addition to the class of ionic conductors. However, detailed studies (N1 such conductors are scarce. Also the last decade has witnessed an unprecedented boom in research on organic "conducting polymers". These newly devised materials show conductivity spanning from insulator to metallic regimes, which can be manipulated by appropriate chemical treatment. They find applications in devices ranging from rechargeable batteries to "smart windows". This thesis mainly deals with the synthesis and investigations on the electrical properties of (i) certain organbc protonic conductors derived from ethylenediamine and (ii) substituted polyanilines

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central theme of this research concerns the study of vibrationally excited molecules. We have used the local mode description of such vibrational states, and this -model has now gained general acceptance. A central feature of the model is the Wloealizafion of vibrational energy. A study of these high—energy localized states provides example, becauseof this localization, overtone spectra, which measure the absorption of T vibrational energy, are extremely sensitive to the properties of X-H bonds. We also use -overtone spectra to study the conformation of molecules, i.e., the relative internal orientation of their bonds. The thesis comprises six chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber ferrite composites (RFC) are magnetic polymer composites and have a variety of applications as flexible magnets, pressure=photo sensors, and microwave absorbers. The mouldability into complex shapes is one of the advantages of these magnetic elastomers. They have the potential of replacing the conventional ceramic materials, due to theire flexible nature. In the present study, the incorporation of pre-characterized hexagonal ferrites, namely barium ferrite (BaFe12O19), into natural rubber matrix is carried out according to a suitable recipe for various loadings of the filler. The processability of these compounds was determined by evaluating the cure characteristics: scorch time, cure time, and minimum and maximum torque. It has been found that the addition of magnetic fillers does not affect the processability of the composites, whereas the physical properties are modified. The magnetic properties of these composites containing various loadings of the magnetic filler were also investigated. The magnetic properties of RFC can be controlled by the addition of appropriate amount of the ferrite filler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first chapter of the thesis gives a general introduction about flexible electronics, dielectrics and composites. The recent developments in flexible electronics also discussed in this chapter. The preparation and characterization techniques used for the butyl rubber ceramic composites are given in chapter 2. The synthesis and characterization of butyl rubber filled with low permittivity ceramic composites are described in chapter 3. The chapter 4 deals with the synthesis and characterization of butyl rubber-high permittivity ceramic composites. The effect of high permittivity ceramic fillers such as TiO2, Sr2Ce2Ti5O15 and SrTiO3 on dielectric, thermal and mechanical properties was studied. The present investigation deals with synthesis, characterization and properties of butyl rubber composites with low, high and very high ceramic fillers and also the effect of particle size on dielectric, thermal and mechanical properties of selected composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of parametrized equations has been published by Bratsch and Lagowski for calculating thermodynamic properties of the lanthanides, actinides, element 104, and certainrelated elements. Since these equations were applied to element 104, new values for the first four ionization energies and radii of the ions of charge +1, +2, +3, and +4 have been calculated for this element. The parametrized equations are used here with these new values to calculate some thermodynamic properties of element 104.