946 resultados para Cathodic cage. Iron nitride film. Saturation magnetization
Resumo:
The magnetic anisotropy in ytterbium iron garnet (YbIG) is theoretically investigated under high magnetic fields (up to 160 kOe). According to the crystal field effect in ytterbium gallium garnet (YbGaG), a detailed discussion of crystal-field interaction in YbIG is presented where a suitable set of crystal-field parameters is obtained. Meanwhile, the influences of nine crystal-field parameters on the crystal-field energy splitting are analyzed. On the other hand, considering the ytterbium-iron (Yb-Fe) superexchange interaction of YbIG, the spontaneous magnetization is calculated at different temperatures for the [111] direction. In particular, we demonstrate that the Wesis constant lambda is the function of 1/T in YbIG. In addition, the field dependences of the magnetization for the [110] and [111] directions are theoretically described where a noticeable anisotropy can be found. Our theory further confirms the great contribution of anisotropic Yb-Fe superexchange interaction to the anisotropy of the magnetization in YbIG. Moreover, our theoretical results are compared with the available experiments.
Resumo:
Cubic boron nitride (c-BN) films were prepared by ion beam assisted deposition (IBAD) technique, and the stresses were primary estimated by measuring the frequency shifts in the infrared-absorption peaks of c-BN samples. To test the possible effects of other factors, dependencies of the c-BN transversal optical mode position on film thickness and c-BN content were investigated. Several methods for reducing the stress of c-BN films including annealing, high temperature deposition, two-stage process, and the addition of a small amount of Si were studied, in which the c-BN films with similar thickness and cubic phase content were used to evaluate the effects of the various stress relief methods. It was shown that all the methods can reduce the stress in c-BN films to various extents. Especially, the incorporation of a small amount of Si (2.3 at.%) can result in a remarkable stress relief from 8.4 to similar to 3.6 GPa whereas the c-BN content is nearly unaffected, although a slight degradation of the c-BN crystallinity is observed. The stress can be further reduced down below I GPa by combination of the addition of Si with the two-stage deposition process. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
The phase transition between thermodynamically stable hexagonal wurtzite (h-WZ) gallium nitride (GaN) and metastable cubic zinc-blende (c-ZB) GaN during growth by radio-frequency planar magnetron sputtering is studied. GaN films grown on substrates with lower mismatches tend to have a h-WZ structure, but when grown on substrates with higher mismatches, a c-ZB structure is preferred. GaN films grown under high nitrogen pressure also tend to have a h-WZ structure, whereas a c-ZB structure is preferred when grown under low nitrogen pressure. In addition, low target-power growth not only helps to improve hexagonal GaN (h-GaN) crystalline quality at high nitrogen pressure on low-mismatch substrates, but also enhances cubic GaN (c-GaN) quality at low nitrogen pressure on high-mismatch substrates. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.
Resumo:
The biaxial piezospectroscopic coefficient (i.e., the rate of spectral shift with stress) of the electrostimulated near-band-gap luminescence of gallium nitride (GaN) was determined as Pi=-25.8 +/- 0.2 meV/GPa. A controlled biaxial stress field was applied on a hexagonal GaN film, epitaxially grown on (0001) sapphire using a ball-on-ring biaxial bending jig, and the spectral shift of the electrostimulated near-band-gap was measured in situ in the scanning electron microscope. This calibration method can be useful to overcome the lack of a bulk crystal of relatively large size for more conventional uniaxial bending calibrations, which has so far hampered the precise determination of the piezospectroscopic coefficient of GaN. The main source of error involved with the present calibration method is represented by the selection of appropriate values for the elastic stiffness constants of both film and substrate. The ball-on-ring calibration method can be generally applied to directly determine the biaxial-stress dependence of selected cathodoluminescence bands of epilayer/substrate materials without requiring separation of the film from the substrate. (c) 2006 American Institute of Physics.
Resumo:
The effect of sulfur vapor pressure in preparing the FeS2 films has been discussed and some incongruous views about sulfur pressure have been clarified in this paper based on experimental results and theoretical analysis. It is shown that lower sulfur pressures than the saturation value only result in poorer crystallization and worse performances, and in other words the FeS2 films could be optimized through improving the sulfur pressure till the saturation point. However for a certain temperature the sulfur pressure is limited by its saturated vapor pressure, and further increase of the sulfur quantity reacted with Fe films has little influence on the structure and properties of the pyrite films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.
Resumo:
In our recent report, [Xu , Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n(+) layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n(+) conductivity is not only from the contribution of nitride-site oxygen (O-N), but also from the gallium-site silicon (Si-Ga) donors, with activation energies 2 meV (for O-N) and 42 meV (for Si-Ga), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. Si-Ga and O-N should also be shallow donors and V-Ga-O or V-Ga-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration N-A=1.8x10(17) cm(-3), the second donor concentration N-D2=1.0x10(18) cm(-3), and the compensation ratio C=N-A/N-D1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. (C) 2001 American Institute of Physics.
Resumo:
Morphology of Gallium Nitride (GaN) in initial growth stage was observed with atomic force microscopy (AFM) and scanning electron microscopy (SEM), It was found that the epilayer developed from islands to coalesced film. Statistics based on AFM observation was carried out to investigate the morphology characteristics. It was found that the evolution of height distribution could be used to describe morphology development. Statistics also clearly revealed variation of top-face growth rate among islands. Indium-doping effect on morphology development was also statistically studied. The roughening and smoothing behavior in morphology development was explained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Raman scattering, photoluminescence (PL), and nuclear reaction analysis (MA) have been employed to investigate the effects of rapid thermal annealing (RTA) on GaN films grown on sapphire (0001) substrates by gas-source molecular-beam epitaxy, The Raman spectra showed the presence of the E-2 (high) mode of GaN and shift of this mode from 572 to 568 cm(-1) caused by annealing. The results showed that RTA has a significant effect on the strain relaxation caused by the lattice and thermal expansion misfit between the GaN epilayer and the substrate. The PL peak exhibited a blueshift in its energy position and a decrease in the full width at half maximum after annealing, indicating an improvement in the optical quality of the film. Furthermore, a green luminescence appeared after annealing and increased in intensity with increasing annealing time. This effect was attributed to H concentration variation in the GaN film, which was measured by NRA. A high H concentration exists in as-grown GaN, which can neutralize the deep level, and the H-bonded complex dissociates during RTA, This leads to the appearance of a luminescent peak in the PL spectrum. (C) 1998 American Institute of Physics.
Resumo:
Based on the theoretical model we have proposed, a complete study on the kinetics of photoincluced anisotropy in diarylethene films is performed. The kinetic curves of molecular concentration, photoincluced dichroism and birefringence are calculated, respectively. It is found that the colored molecular concentration decreases with the increase of the excitation exposure until saturation, and the photoincluced anisotropy increases to a maximum and then decreases gradually. The optimal exposure is 260 J/cm(2). In addition, the transmittance of probe beam reflecting the anisotropy is measured by experiment. The theoretical results are compared with experimental data, and basic concordance is found between both sets of data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.
Resumo:
We systematically investigated the weak epitaxy growth (WEG) behavior of a series of planar phthalocyanine compounds (MPc), i.e., metal-free phthalocyanine (H2PC), nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), iron phthalocyanine (FePc); cobalt phthalocyanine (CoPc), grown on a p-sexiphenyl (p-6P) monolayer film by selected area electron diffraction (SAED) and atomic force microscopy (AFM). Two types of epitaxial relations, named as incommensurate epitaxy and commensurate epitaxy, were identified between phthalocyanine compounds and the substrate of the p-6P film.
Resumo:
Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes Fe-II to Fe-III, and then electrochemical reduction of Fe-III therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.