964 resultados para Castor oil based polyurethane
Resumo:
The aim of this study is to reevaluate the plant sources of the Amazon rosewood oil which have been named Aniba rosaeodora Ducke and Aniba duckei Kosterm. There is some disagreement on the exact botanical status of these species. Some Lauraceae specialists analyzing available material from both species concluded that there is no basis for regarding them as different. Based on our results we are confirming that the chemical composition of both species is quite different from that previously reported. So we are suggesting to bring back the previous botanical rosewood status as proposed by Adolph Ducke.
Resumo:
ABSTRACT: The objective of this study was to evaluate the effect of inclusion of lipid residue of biodiesel originated in the processing of palm oil (Elaeis guineensis) in the diet on the digestibility of feedlot lambs. Twenty-five crossbred male castrated lambs, weighing 20±1.61 kg, were distributed in randomized blocks with five treatments and five replications. The experimental period lasted 22 days; 15 for diet adaptation, 2 for the adaptation to the indicator LIPE (lignin from Eucalyptus grandis isolated, purified and enriched, UFMG, Minas Gerais) and 5 for fecal sampling. Diets were formulated with 64% concentrate based on corn and soybean meal, 31% Massai grass (Panicum maximum cv. Massai) hay and 5% lipid supplementation from increasing levels of substitution of 0, 25, 50, 75 and 100% of palm oil for biodiesel oil from palm residue. The lambs were offered two meals a day, at 7h00 and 16h00. There was linear effect of inclusion of the residue from palm oil biodiesel on dry matter intake. There was no change in digestibility of nutrients except for ether extract. The use of biodiesel from palm oil residue up to 100% replacement for the lipid supplementation of sheep positively influences the consumption without altering the digestibility of nutrients.
Resumo:
The castor bean (Ricinus communis L.) is a tropical oilseed species, and the oil extracted from its seeds is one of the most versatile oils in the nature, showing various industrial uses. Even though it is a rustic species, the castor bean is subjected to several diseases such as the gray mold, caused by the fungus Amphobotrys ricini. Genetic breeding would be the best alternative for the disease control, but a long time is required to obtain resistant cultivars. Thus, the use of control strategies based on chemical, alternative or biological methods shows viable in the short term. The aim of this study was to investigate gray mold control efficiency, in castor bean crop, using chemical, alternative and biological methods. The pathogen control efficiency was evaluated both in vitro and in vivo using fungicides, essential oils and biological control agents. As regards the in vitro inhibition of the pathogen mycelial growth, the best treatments with essential oils were those based on C. martini and C. zeylanicum at all five tested concentrations. For both oils, the average diameter of colonies was 0.7 cm against 4.79 cm for the control treatment. For the fungicides, at all four tested levels, the most efficient active ingredients were methyl tiophanate, carbendazim, tebuconazole and iprodione. The ED50 of these fungicides was <1uL/L, yielding 100% mycelial growth inhibition at all concentrations. As to the inhibition of A. ricini conidium germination, the fungicides tebuconazole and chlorotanolyl were the best at all tested concentrations, and the average of germinated conidia with these fungicides was 0.0 and 0.15%, respectively, against 100% for the control treatment. In the field, treatment with the fungicide iprodione was the best for the disease control when compared to biological and alternative treatments. Under field conditions, the average disease severity for the treatment with iprodione was 15.76% against 95.81% for the inoculated control.
Resumo:
Azide-alkyne Huisgen click chemistry provides new synthetic routes for making thermoplastic polytriazole polymers-without solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the odd-even effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries.
Resumo:
Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.
Comparison of lipase production on crambe oil and meal by Fusarium sp (Gibberella fujikuroi complex)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the development of a knowledge-based system (KBS) prototype able to design natural gas cogeneration plants, demonstrating new features for this field. The design of such power plants represents a synthesis problem, subject to thermodynamic constraints that include the location and sizing of components. The project was developed in partnership with the major Brazilian gas and oil company, and involved interaction with an external consultant as well as an interdisciplinary team. The paper focuses on validation and lessons learned, concentrating on important aspects such as the generation of alternative configuration schemes, breadth of each scheme description created by the system, and its module to support economic feasibility analysis. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
This study analysed the effect of pastes formulated with calcium hydroxide P.A. and different vehicles (saline solution - paste A and Copaifera langsdorffii Desfon oil - paste B) on oral microorganisms and dentin bridge formation in dogs. The antimicrobial action of the pastes and their components was analysed by the minimum inhibitory concentration in agar gel technique. The components were diluted and tested on fifteen standard strains of microorganisms associated with endodontic diseases. The microorganisms were cultivated and after incubation data was analysed using One-Way ANOVA and Turkey's test (P≤0.05). Four superior incisors of ten animals were used to evaluate dentin bridge formation. Two incisors were capped with paste A (GA) and two with paste B (GB). After 90 days, the teeth were extracted for histological analysis and the degree of dentin bridge formation evaluated. Data was analysed by the Kruskal-Wallis test (P<0.05). The pastes and their components were classified in the following decreasing order of antimicrobial action: calcium hydroxide P.A., paste A, paste B and Copaifera langsdorffii Desfon oil. Calcium hydroxide P.A. showed significantly higher antimicrobial action than the pastes or their vehicles. No significant difference was observed between the two pastes in dentin bridge formation. Based on the microorganisms studied, it can be concluded that the pastes analysed showed similar antimicrobial potential but differed significantly from their individual components. No significant difference was observed in dentin bridge formation between the different pastes tested.