968 resultados para Carbonate minerals.
Resumo:
In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity
Resumo:
The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium
Resumo:
One hundred and twenty six piglets from a commercial genetic strain weaned at 21 days of age (6.11±0.42 kg) were used to evaluate the effects of supplementation levels of organic sources of trace minerals in the diets of weaned piglets on performance, occurrence of diarrhea, excretion of copper and zinc in the feces, and hematological parameters. A completely randomized block design was adopted, composed of six treatments (diets containing 100% of inorganic trace minerals premix at 3.00 kg/T; diets containing 0, 25, 50, 75 or 100% of organic trace minerals premix, equivalent to 0; 0.75; 1.50; 2.25 or 3.00 kg/T, respectively), seven replicates and three animals per plot. During the experimental period (from 21 to 63 days of age), the increasing levels of organic trace minerals premix in the diets determined a quadratic effect on daily weight gain (DWG), feed conversion (FC), percentage of hematocrit (Ht), hemoglobin (Hb), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), platelets (Pt), and a linear increase of Cu and Zn concentrations in feces. The comparison of means between the treatment with inorganic trace minerals premix and the other treatments showed that piglets fed diets without trace minerals premix had lower values of DWG, Ht, Hb, MCH, MCV, Pt and the worst FC value of piglets fed diets containing 25% of organic trace minerals premix presented lower values of Ht and Hb, in comparison with those fed diets with 100% of inorganic trace minerals premix. Inorganic trace minerals premix can be substituted by organic trace minerals premix at a lower level of inclusion in diets for weaned piglets.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Bura do Itapira pua carbonatite is located in southern Brazil and belongs to the Cretaceous Ponta Grossa alkaline-carbonatitic province related to the opening of the South Atlantic. The carbonatite complex is emplaced in Proterozoic granites and is mainly composed of plutonic magnesio- to ferrocarbonatite, with smaller amounts of subvolcanic magnesiocarbonatite. Hydrothermal alteration of the carbonatite has led to the formation of quartz, apatite, fluorite, rue earth fluorocarbonates, barite and sulfides in variable proportions. Trace element data, delta(13)C and delta(18)O are presented here, with the aim of better understanding the geochemical nature of hydrothermal alteration related to rare earth elements (REE) mineralization. The non-overprinted plutonic carbonatite shows the lowest REE contents, and its primitive carbon and oxygen stable isotopic composition places it in the field of primary igneous carbonatites. Two types of hydrothermally overprinted plutonic carbonatites can be distinguished based on secondary minerals and geochemical composition. Type I contains mainly quartz, rare earth fluorocarbonates and apatite as hydrothermal secondary minerals, and has steep chondrite normalized REE patterns, with Sigma(REE+Y) of up to 3 wt.% (i.e., two orders of magnitude higher than in fresh plutonic samples). In contrast, the Type II overprint contains apatite, fluorite and barite as dominant hydrothermal minerals, and is characterized by heavy REE enrichment relative to the fresh samples, with flat chondrite normalized REE patterns. Carbon and oxygen stable isotope ratios of Types I and II are elevated (delta(18)O + 8 to + 12 parts per thousand; delta(13)C - 6 to - 2 parts per thousand) relative to the fresh samples. Hydrothermally overprinted carbonatites exposed to weathering show even higher delta(18)O values (delta(18)O 13 to 25 parts per thousand) but no additional REE enrichment. The subvolcanic carbonatite has anomalously high delta(13)C of up to + 1 parts per thousand, which suggests crustal contamination through interaction with carbonate-bearing metasediments. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Fortaleza de Minas Ni-Cu-PGE sulfide deposit is hosted by Archean komatiitic rocks of the Morro do Ferro greenstone belt, near the southwestern margin of the Sa (aFrancisco) over tildeo Francisco craton, Minas Gerais state, Brazil. The deposit contains 6 million tonnes of ore with an average grade of 2.2 wt% Ni, 0.4% Cu, 0.05% Co and 1.2 ppm PGE+Au, and comprises (i) a main orebody, which is metamorphosed, deformed and transposed along a regional shear zone, consisting mainly of disseminated, brecciated and stringer sulfide ores that are interpreted to be of early magmatic origin, and (ii) PGE-rich discordant veins that are hosted in N-S- and NE-SW-trending late faults that cross-cut the main orebody. The discordant PGE-rich ore (up to 4 ppm total PGE) is characterized by thin, discontinuous and irregular veins and lenses of massive sulfides hosted by serpentinite and talc schist, and is relatively undeformed if compared with the early types of ore. It is composed mainly of pyrrhotite, pentlandite, chalcopyrite, magnetite, carbonates, and amphiboles, with minor cobaltite-gersdorffite, sphalerite, ilmenite, and quartz, and rarely maucherite (Ni11Asg), tellurides and platinum-group minerals (PGM). Omeeite, irarsite, sperrylite, and Ni-bearing merenskyite are the main PGM, followed by minor amounts of testibiopalladite and an unknown phase containing Ru, Te, and As. The PGM occur either included in, or at the margins of, sulfides, sulfarsenides, silicates and oxides, or filling fractures in pyrrhotite, pentlandite, and chalcopyrite, suggesting that they started to precipitate with these minerals and continued to precipitate after the sulfides were formed. The mantle-normalized metal distribution of the two samples of discordant veins shows distinct patterns: one richer in Ni-Pd-Ir-Rh-Ru-Os and another with higher amounts of Cu-Pt-Bi. Both are strongly depleted in Cr if compared with the metamorphosed magmatic ore of this deposit, which follows the general Kambalda-type magmatic trend. on the basis of structural, mineralogical and geochemical evidence, we propose that the PGE-rich discordant ore may have formed by remobilization of metals from the deformed, metamorphosed magmatic orebody (which shows a depleted pattern in these elements) by reduced (pyrrhotite - pentlandite - pyrite are stable), neutral to alkaline and carbonic fluids (carbonate-stable). The PGE may have been transported as bisulfide complexes, and precipitated as tellurides (mainly Pd) and arsenides (Pt, Rh, Ru, Os, Ir) in the late N-S and NE-SW-trending faults owing to a decrease in the activity of S caused by the precipitation of sulfides in the veins.
Resumo:
Brazil does not have working platinum mines, nor even large reserves of the platinum metals, but there is platinum in Brazil. In this paper, four massifs (mafic/ultramafic complexes) in eastern Brazil, in the states of Minas Gerais and Ceara, where platinum is found will be described. Three of these massifs contain concentrations of platinum group minerals or platinum group elements, and gold, associated with the chromitite rock found there. In the fourth massif, in Minas Gerais State, the platinum group elements are found in alluvial deposits at the Bom Sucesso occurrence. This placer is currently being studied.
Resumo:
Solution- and solid-phase changes associated with galena (PbS) and sphalerite (ZnS) oxidation by T. ferrooxidans and T. thiooxidans, were determined. In experiments with galena, anglesite (PbSO4) was detected as a solid-phase product in biotic and abiotic experiments. In T. ferrooxidans cultures supplemented with FeSO4, jarosite [MFe3 (SO4)(2) (OH)(6)] was also detected as a new solid phase product, whereas SO was not detected in the residues. In sphalerite experiments, minor amounts of SO accumulated in FeSO4-amended sphalerite media with or without T. ferrooxidans or T. thiooxidans. Jarosite was only detected in T. ferrooxidans culture with FeSO4. By comparison with T. thiooxidans, T. ferrooxidans was more efficient in the oxidation of galena and sphalerite.