931 resultados para Capture-recapture Data
Resumo:
In this thesis we are interested in financial risk and the instrument we want to use is Value-at-Risk (VaR). VaR is the maximum loss over a given period of time at a given confidence level. Many definitions of VaR exist and some will be introduced throughout this thesis. There two main ways to measure risk and VaR: through volatility and through percentiles. Large volatility in financial returns implies greater probability of large losses, but also larger probability of large profits. Percentiles describe tail behaviour. The estimation of VaR is a complex task. It is important to know the main characteristics of financial data to choose the best model. The existing literature is very wide, maybe controversial, but helpful in drawing a picture of the problem. It is commonly recognised that financial data are characterised by heavy tails, time-varying volatility, asymmetric response to bad and good news, and skewness. Ignoring any of these features can lead to underestimating VaR with a possible ultimate consequence being the default of the protagonist (firm, bank or investor). In recent years, skewness has attracted special attention. An open problem is the detection and modelling of time-varying skewness. Is skewness constant or there is some significant variability which in turn can affect the estimation of VaR? This thesis aims to answer this question and to open the way to a new approach to model simultaneously time-varying volatility (conditional variance) and skewness. The new tools are modifications of the Generalised Lambda Distributions (GLDs). They are four-parameter distributions, which allow the first four moments to be modelled nearly independently: in particular we are interested in what we will call para-moments, i.e., mean, variance, skewness and kurtosis. The GLDs will be used in two different ways. Firstly, semi-parametrically, we consider a moving window to estimate the parameters and calculate the percentiles of the GLDs. Secondly, parametrically, we attempt to extend the GLDs to include time-varying dependence in the parameters. We used the local linear regression to estimate semi-parametrically conditional mean and conditional variance. The method is not efficient enough to capture all the dependence structure in the three indices —ASX 200, S&P 500 and FT 30—, however it provides an idea of the DGP underlying the process and helps choosing a good technique to model the data. We find that GLDs suggest that moments up to the fourth order do not always exist, there existence appears to vary over time. This is a very important finding, considering that past papers (see for example Bali et al., 2008; Hashmi and Tay, 2007; Lanne and Pentti, 2007) modelled time-varying skewness, implicitly assuming the existence of the third moment. However, the GLDs suggest that mean, variance, skewness and in general the conditional distribution vary over time, as already suggested by the existing literature. The GLDs give good results in estimating VaR on three real indices, ASX 200, S&P 500 and FT 30, with results very similar to the results provided by historical simulation.
Resumo:
The Silk Road Project was a practice-based research project investigating the potential of motion capture technology to inform perceptions of embodiment in dance performance. The project created a multi-disciplinary collaborative performance event using dance performance and real-time motion capture at Deakin University’s Deakin Motion Lab. Several new technological advances in producing real-time motion capture performance were produced, along with a performance event that examined the aesthetic interplay between a dancer’s movement and the precise mappings of its trajectories created by motion capture and real-time motion graphic visualisations.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.
Resumo:
There is a notable shortage of empirical research directed at measuring the magnitude and direction of stress effects on performance in a controlled environment. One reason for this is the inherent difficulties in identifying and isolating direct performance measures for individuals. Additionally most traditional work environments contain a multitude of exogenous factors impacting individual performance, but controlling for all such factors is generally unfeasible (omitted variable bias). Moreover, instead of asking individuals about their self-reported stress levels we observe workers' behavior in situations that can be classified as stressful. For this reason we have stepped outside the traditional workplace in an attempt to gain greater controllability of these factors using the sports environment as our experimental space. We empirically investigate the relationship between stress and performance, in an extreme pressure situation (football penalty kicks) in a winner take all sporting environment (FIFA World Cup and UEFA European Cup competitions). Specifically, we examine all the penalty shootouts between 1976 and 2008 covering in total 16 events. The results indicate that extreme stressors can have a positive or negative impact on Individuals' performance. On the other hand, more commonly experienced stressors do not affect professionals' performances.
Resumo:
The technological environment in which Australian SMEs operate can be best described as dynamic and vital. The rate of technological change provides the SME owner/manager a complex and challenging operational context. Wireless applications are being developed that provide mobile devices with Internet content and e-business services. In Australia the adoption of e-commerce by large organisations has been relatively high, however the same cannot be said for SMEs where adoption has been slower than other developed countries. In contrast however mobile telephone adoption and diffusion is relatively high by SMEs. This exploratory study identifies attitudes, perceptions and issues for mobile data technologies by regional SME owner/managers across a range of industry sectors. The major issues include the sector the firm belongs to, the current adoption status of the firm, the level of mistrust of the IT industry, the cost of the technologies and the applications and attributes of the technologies.
Resumo:
The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices, communication, e-commerce and security.
Resumo:
The seemingly exponential nature of technological change provides SMEs with a complex and challenging operational context. The development of infrastructures capable of supporting the wireless application protocol (WAP) and associated 'wireless' applications represents the latest generation of technological innovation with potential appeals to SMEs and end-users alike. This paper aims to understand the mobile data technology needs of SMEs in a regional setting. The research was especially concerned with perceived needs across three market segments : non-adopters, partial-adopters and full-adopters of new technology. The research was exploratory in nature as the phenomenon under scrutiny is relatively new and the uses unclear, thus focus groups were conducted with each of the segments. The paper provides insights for business, industry and academics.
Resumo:
The technological environment in which contemporary small- and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters, and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall, the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices; communication, e-commerce and security
Resumo:
The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The seemingly exponential nature of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the small and medium-sized enterprise a complex and challenging operational context. The development of infrastructures capable of supporting the Wireless Application Protocol (WAP)and associated 'wireless' applications represents the latest generation of technological innovation with potential appeal to SMEs and end-users alike. The primary aim of this research was to understand the mobile data technology needs of SMEs in a regional setting. The research was especially concerned with perceived needs across three market segments; non-adopters of new technology, partial-adopters of new technology and full-adopters of new technology. Working with an industry partner, focus groups were conducted with each of these segments with the discussions focused on the use of the latest WP products and services. Some of the results are presented in this paper.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
This paper investigates the use of the FAB-MAP appearance-only SLAM algorithm as a method for performing visual data association for RatSLAM, a semi-metric full SLAM system. While both systems have shown the ability to map large (60-70km) outdoor locations of approximately the same scale, for either larger areas or across longer time periods both algorithms encounter difficulties with false positive matches. By combining these algorithms using a mapping between appearance and pose space, both false positives and false negatives generated by FAB-MAP are significantly reduced during outdoor mapping using a forward-facing camera. The hybrid FAB-MAP-RatSLAM system developed demonstrates the potential for successful SLAM over large periods of time.
Resumo:
As network capacity has increased over the past decade, individuals and organisations have found it increasingly appealing to make use of remote services in the form of service-oriented architectures and cloud computing services. Data processed by remote services, however, is no longer under the direct control of the individual or organisation that provided the data, leaving data owners at risk of data theft or misuse. This paper describes a model by which data owners can control the distribution and use of their data throughout a dynamic coalition of service providers using digital rights management technology. Our model allows a data owner to establish the trustworthiness of every member of a coalition employed to process data, and to communicate a machine-enforceable usage policy to every such member.
Resumo:
Modelling droplet movement on leaf surfaces is an important component in understanding how water, pesticide or nutrient is absorbed through the leaf surface. A simple mathematical model is proposed in this paper for generating a realistic, or natural looking trajectory of a water droplet traversing a virtual leaf surface. The virtual surface is comprised of a triangular mesh structure over which a hybrid Clough-Tocher seamed element interpolant is constructed from real-life scattered data captured by a laser scanner. The motion of the droplet is assumed to be affected by gravitational, frictional and surface resistance forces and the innovation of our approach is the use of thin-film theory to develop a stopping criterion for the droplet as it moves on the surface. The droplet model is verified and calibrated using experimental measurement; the results are promising and appear to capture reality quite well.