891 resultados para Cano, Alonso, 1601-1667.
Resumo:
The complete nucleocapsid (N) genes of eight Australian isolates of Lettuce necrotic yellows virus (LNYV) were amplified by reverse transcription PCR, cloned and sequenced. Phylogenetic analyses of these sequences revealed two distinct subgroups of LNYV isolates. Nucleotide sequences within each subgroup were more than 96% identical but heterogeneity between groups was about 20% at the nucleotide sequence level. However, less than 4% heterogeneity was noted at the amino acid level, indicating mostly third nucleotide position changes and a strong conservation for N protein function. There was no obvious geographical or temporal separation of the subgroups in Australia.
Resumo:
Purpose Transient changes in corneal topography associated with soft and conventional or reverse geometry rigid contact lens wear have been well documented; however, only a few studies have examined the influence of scleral contact lens wear upon the cornea. Therefore, in this study, we examined the influence of modern miniscleral contact lenses, which land entirely on the sclera and overlying tissues, upon anterior corneal curvature and optics. Methods Anterior corneal topography and elevation data were acquired using Scheimpflug imaging (Pentacam HR, Oculus) immediately prior to and following 8 hours of miniscleral contact lens wear in 15 young healthy adults (mean age 22 ± 3 years, 8 East Asian, 7 Caucasian) with normal corneae. Corneal diurnal variations were accounted for using data collected on a dedicated measurement day without contact lens wear. Corneal clearance was quantified using an optical coherence tomographer (RS-3000, Nidek) following lens insertion and after 8 hours of lens wear. Results Although corneal clearance was maintained throughout the 8 hour lens wear period, significant corneal flattening (up to 0.08 ± 0.04 mm) was observed, primarily in the superior mid-peripheral cornea, which resulted in a slight increase in against-the-rule corneal astigmatism (mean +0.02/-0.15 x 94 for an 8 mm diameter). Higher order aberration terms of horizontal coma, vertical coma and spherical aberration all underwent significant changes for an 8 mm corneal diameter (p ≤ 0.01), which typically resulted in a decrease in RMS error values (mean change in total higher order RMS -0.035 ± 0.046 µm for an 8 mm diameter). There was no association between the magnitude of change in central or mid-peripheral corneal clearance during lens wear and the observed changes in corneal curvature (p > 0.05). However, Asian participants displayed a significantly greater reduction in corneal clearance (p = 0.04) and greater superior-nasal corneal flattening compared to Caucasians (p = 0.048). Conclusions Miniscleral contact lenses that vault the cornea induce significant changes in anterior corneal surface topography and higher order aberrations following 8 hours of lens wear. The region of greatest corneal flattening was observed in the superior-nasal mid-periphery, more so in Asian participants. Practitioners should be aware that corneal measurements obtained following miniscleral lens removal may mask underlying corneal steepening.
Resumo:
- Purpose To examine the change in corneal thickness and posterior curvature following 8 hours of miniscleral contact lens wear. - Methods Scheimpflug imaging (Pentacam HR, Oculus) was captured before, and immediately following, 8 hours of miniscleral contact lens wear for 15 young (mean age 22 ± 3 years), healthy participants with normal corneae. Natural diurnal variations were considered by measuring baseline corneal changes obtained on a separate control day without contact lens wear. - Results Over the central 6 mm of the cornea, a small, but highly statistically significant amount of edema was observed following 8 hours of miniscleral lens wear, after accounting for normal diurnal fluctuations (mean ± standard deviation percentage swelling 1.70 ± 0.98%, p < 0.0001). Posterior corneal topography remained stable following lens wear (-0.01 ± 0.07 mm steepening over the central 6 mm, p = 0.60). The magnitude of posterior corneal topographical changes following lens wear did not correlate with the extent of lens-related corneal edema (r = -0.16, p = 0.57). Similarly, the initial central corneal vault (maximum post-lens tear layer depth) was not associated with corneal swelling following lens removal (r = 0.27, p = 0.33). - Conclusions While a small amount of corneal swelling was induced following 8 hours of miniscleral lens wear (on average <2%), modern high Dk miniscleral contact lenses that vault the cornea do not induce clinically significant corneal edema or hypoxic related posterior corneal curvature changes during short-term wear. Longer-term studies of compromised eyes (e.g. corneal ectasia) are still required to inform the optimum lens and fitting characteristics for safe scleral lens wear to minimize corneal hypoxia.
Resumo:
The wetland resources of the Queensland coastline have been mapped as a baseline dataset for Marine Protected Area investigation and particularly Fish Habitat Area (FHA) declaration, Ramsar site nomination and continued monitoring of these important fish habitats. This report summarises the results of the mapping undertaken in the Bowen region from the East Coast of Cape Upstart (Abbot Bay) to Gloucester Island (encompassing Edgecumbe Bay). The study was undertaken in order to: 1. document and map the coastal wetland communities within the Bowen region; 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the significance of the coastal wetlands in the region. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
1:100,000 coastal wetland vegetation mapping for Queensland including mangrove communities, saltpans and saline grasslands. Mapping taken from Landsat TM images with ground truthing. Additional metadata is available for details of techniques and accuracy for each section of coastline. Data Currency for each section of coast: NT border to Flinders River - 1995 SE Gulf of Carpentaria - 1987, 1988, 1991, 1992 Cape York Peninsula - 1986-88, 1991 Cape Trib to Bowling Green Bay - 1997-99 The Burdekin Region - 1991 The Bowen Region - 1994-95 The Whitsunday Region - 1997 Repulse Bay - 1989 Central Qld - 1995, 1997 The Curtis Coast Region - 1997 Round Hill Head to Tin Can Inlet - 1997 Moreton Region - 1995. Article Links: 1/ #1662. Queensland Coastal Wetland Resources: the Northern Territory Border to Flinders River. Project Report. Information Series QI00099. 2/ #1663. Queensland Coastal Wetland Resources: Sand Bay to Keppel Bay. Project Report. Information Series QI00100. 3/ #1664. Queensland Coastal Wetland Resources: Cape Tribulation to Bowling Green Bay. Project Report. Information Series QI01064. 4/ #1666. Coastal Wetlands Resources Investigation of the Burdekin Delta for declaration as fisheries reserves. Report to Ocean Rescue 2000. Project Report. 5/ #1667. Queensland Coastal Wetland Resource Investigation of the Bowen Region: Cape Upstart to Gloucester Island. Project Report. 6/ #1784. Resource Assessment of the Tidal Wetland Vegetation of Western Cape York Peninsula, North Queensland, Report to Ocean Rescue 2000. Project Report. 7/ #1785. Marine Vegetation of Cape York Peninsula. Cape York Peninsula Land Use Strategy. Project Report. 8/ #3544. Queensland Coastal Wetland Resources: The Whitsunday Region. Project Report.Information Series QI01065. 9/ #3545. Queensland Coastal Wetland Resources: Round Hill Head to Tin Can Inlet. Project Report. Information Series QI99081.
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
Resumo:
PURPOSE To quantify the influence of short-term wear of miniscleral contact lenses on the morphology of the corneo-scleral limbus, the conjunctiva, episclera and sclera. METHODS OCT images of the anterior eye were captured before, immediately following 3h of wear and then 3h after removal of a miniscleral contact lens for 10 young (27±5 years) healthy participants (neophyte rigid lens wearers). The region of analysis encompassed 1mm anterior, to 3.5mm posterior to the scleral spur. Natural diurnal variations in thickness were measured on a separate day and compensated for in subsequent analyses. RESULTS Following 3h of lens wear, statistically significant tissue thinning was observed across all quadrants, with a mean decrease in thickness of -24.1±3.6μm (p<0.001), which diminished, but did not return to baseline 3h after lens removal (-16.9±1.9μm, p<0.001). The largest tissue compression was observed in the superior quadrant (-49.9±8.5μm, p<0.01) and in the annular zone 1.5mm from the scleral spur (-48.2±5.7μm), corresponding to the approximate edge of the lens landing zone. Compression of the conjunctiva/episclera accounted for about 70% of the changes. CONCLUSIONS Optimal fitting miniscleral contact lenses worn for three hours resulted in significant tissue compression in young healthy eyes, with the greatest thinning observed superiorly, potentially due to the additional force of the eyelid, with a partial recovery of compression 3h after lens removal. Most of the morphological changes occur in the conjunctiva/episclera layers.
Resumo:
Purpose To examine whether anterior scleral and conjunctival thickness undergoes significant diurnal variation over a 24-hour period. Methods Nineteen healthy young adults (mean age 22 ± 2 years) with minimal refractive error (mean spherical equivalent refraction -0.08 ± 0.39 D), had measures of anterior scleral and conjunctival thickness collected using anterior segment optical coherence tomography (AS-OCT) at seven measurement sessions over a 24-hour period. The thickness of the temporal anterior sclera and conjunctiva were determined at 6 locations (each separated by 0.5 mm) at varying distances from the scleral spur for each subject at each measurement session. Results Both the anterior sclera and conjunctiva were found to undergo significant diurnal variations in thickness over a 24-hour period (both p <0.01). The sclera and conjunctiva exhibited a similar pattern of diurnal change, with a small magnitude thinning observed close to midday, and a larger magnitude thickening observed in the early morning immediately after waking. The amplitude of diurnal thickness change was larger in the conjunctiva (mean amplitude 69 ± 29 μm) compared to the sclera (21 ± 8 μm). The conjunctiva exhibited its smallest magnitude of change at the scleral spur location (mean amplitude 56 ± 17 μm) whereas the sclera exhibited its largest magnitude of change at this location (52 ± 21 μm). Conclusions This study provides the first evidence of diurnal variations occurring in the thickness of the anterior sclera and conjunctiva. Studies requiring precise measures of these anatomical layers should therefore take time of day into consideration. The majority of the observed changes occurred in the early morning immediately after waking and were of larger magnitude in the conjunctiva compared to the sclera. Thickness changes at other times of the day were of smaller magnitude and generally not statistically significant.
Resumo:
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.
Resumo:
PURPOSE To examine longitudinal changes in choroidal thickness and axial length in a population of children with a range of refractive errors. METHODS One hundred and one children (41 myopes and 60 nonmyopes) aged 10 to 15 years participated in this prospective, observational longitudinal study. For each child, 6-month measures of choroidal thickness (using enhanced depth imaging optical coherence tomography) and axial ocular biometry were collected four times over an 18-month period. Linear mixed-models were used to examine the longitudinal changes in choroidal thickness and the relationship between changes in choroidal thickness and axial eye growth over the study period. RESULTS A significant group mean increase in subfoveal choroidal thickness was observed over 18 months (mean increase 13 6 22 lm, P < 0.001). Myopic children exhibited significantly thinner choroids compared with nonmyopic children (P < 0.001), although there was no significant time by refractive group interaction (P ¼ 0.46), indicating similar changes in choroidal thickness over time in myopes and nonmyopes. However, a significant association between the change in choroidal thickness and the change in axial length over time was found (P < 0.001, β = −0.14). Children showing faster axial eye growth exhibited significantly less choroidal thickening over time compared with children showing slower axial eye growth. CONCLUSIONS A significant increase in choroidal thickness occurs over an 18-month period in normal 10- to 15-year-old children. Children undergoing faster axial eye growth exhibited less thickening and, in some cases, a thinning of the choroid. These findings support a potential role for the choroid in the mechanisms regulating eye growth in childhood.
Resumo:
To develop and compare a set of metrics for calculating tissue thickness in wide-field OCT data.
Resumo:
• Evidence from cross-sectional studies1,2 suggests that choroidal thickness (ChT) varies with age and refractive error in childhood. However, to date there have been no longitudinal studies examining changes in pediatric ChT. • In this prospective study, the longitudinal changes in ChT and its relationship with eye growth were examined in a population of normal children with a range of refractive errors.
Resumo:
To develop and test a custom-built instrument to simultaneously assess tear film surface quality (TFSQ) and subjective vision score (SVS).