973 resultados para California State Prison at San Quentin.
Resumo:
Pacific coastal bottlenose dolphins (Tursiops truncatus gilli) have apparently moved to Monterey Bay as a result of a shift north of their known range. Between 1983 and 1993, 417 sightings were reported off central California. Eighty-four boat-based surveys, between October 1990 and November 1993, resulted in the photo-identification of 68 uniquely marked individuals. School size ranged between 2 and 35 animals (mean = 16.60, S.D. = 7.72). Forty-three (63%) of the dolphins identified were previously photographed in the Southern California Bight before 1989. Jolly-Seber population estimates indicated an increase in the Monterey Bay population from 1990 to 1993. At least 13 of the photo-identified dolphins were present in Monterey Bay throughout the study period. All but two of the calculated coefficients of association were 0.35, indicating a strong bond among resident animals. The occurrence of an El Niño from January 1992 to the end of 1993 may have affected the number of animals present in the bay: mean school size was significantly greater during El Niño.
Resumo:
The objective of this study was to describe the physical and ichthyological changes occurring seasonally and annually in the south San Francisco Bay, based on the results of 2,561 otter trawl and water samples obtained between February 1973 and June 1982. Temperature varied predictably among seasons in a pattern that varied little between years. Salinity also underwent predictable seasonal changes but the pattern varied substantially between years. The most abundant species of fish were northern anchovy (Engraulis mordax), English sole (Parophrys vetulus), and shiner surfperch (Cymatogaster aggregata). The majority of the common fish species were most abundant during wet years and least abundant in dry years. Numeric diversity was highest during the spring and early summer, with no detectable interannual trends. Species composition changed extensively between seasons and between years, particularly years with extremely high or extremely low freshwater inflows. All the common species exhibited clustered spatial distributions. Such spatial clustering could affect the interpretation of data from estuarine sampling programs. Gobies (Family Gobiidae) were more abundant during flood tides than during ebb tides. English sole were significantly more abundant in shallower areas. Shiner surfperch showed significant differences in abundance between sample areas.(PDF file contains 28 pages.)
Resumo:
An area of about 25 square miles in the western part of the San Gabriel Mountains was mapped on a scale of 1000 feet to the inch. Special attention was given to the structural geology, particularly the relations between the different systems of faults, of which the San Gabriel fault system and the Sierra Madre fault system are the most important ones. The present distribution and relations of the rocks suggests that the southern block has tilted northward against a more stable mass of old rocks which was raised up during a Pliocene or post-Pliocene orogeny. It is suggested that this northward tilting of the block resulted in the group of thrust faults which comprise the Sierra Madre fault system. It is show that this hypothesis fits the present distribution of the rocks and occupies a logical place in the geologic history of the region as well or better than any other hypothesis previously offered to explain the geology of the region.
Resumo:
To understand harbor seal social and mating strategies, I examined site fidelity, seasonal abundance and distribution, herd integrity, and underwater behavior of individual harbor seals in southern Monterey Bay. Individual harbor seals (n = 444) were identified by natural markings and represented greater than 80% of an estimated 520 seals within this community. Year to year fidelity of individual harbor seals to southern Monterey Bay coastline was 84% (n = 388), and long-term associations (>2 yrs) among individuals were common (>40%). Consistent with these long-term associations, harbor seals were highly social underwater throughout the year. Underwater social behavior included three primary types: (1) visual and acoustic displays, such as vocalizing, surface splashing, and bubble-blowing; (2) playful or agonistic social behavior such as rolling, mounting, attending, and biting; and (3) signal gestures such as head-thrusting, fore-flipper scratch~ng, and growling. Frequency of these types of behavior was related to seal age, gender, season, and resource availability. Underwater behavior had a variety of functions, including promotion of learning and social development, reduction of aggression and preservation of social bonds by maintaining social hierarchy, and facilitation of mate selection during breeding season. Social behavior among adult males was significantly correlated with vocalization characteristics (r = 0.99, X2 = 37.7, p = 0.00087), indicating that seals may assess their competition based on underwater vocalization displays and adopt individual strategies for attracting females during breeding season based on social status. Individual mating strategies may include defending underwater territories, using scramble tactics, and developing social alliances. (PDF contains 105 pages)
Resumo:
Inter and intra-annual variation in year-class strength was analyzed for San Francisco Bay Pacific herring (Clupea pallasi) by using otoliths of juveniles. Juvenile herring were collected from March through June in 1999 and 2000 and otoliths from subsamples of these collections were aged by daily otolith increment analysis. The composition of the year classes in 1999 and 2000 were determined by back-calculating the birth date distribution for surviving juvenile herring. In 2000, 729% more juveniles were captured than in 1999, even though an estimated 12% fewer eggs were spawned in 2000. Spawning-date distributions show that survival for the 2000 year class was exceptionally good for a short (approximately 1 month) period of spawning, resulting in a large abundance of juvenile recruits. Analysis of age at size shows that growth rate increased significantly as the spawning season progressed both in 1999 and 2000. However, only in 2000 were the bulk of surviving juveniles a product of the fast growth period. In the two years examined, year-class strength was not predicted by the estimated number of eggs spawned, but rather appeared to depend on survival of eggs or larvae (or both) through the juvenile stage. Fast growth through the larval stage may have little effect on year-class strength if mortality during the egg stage is high and few larvae are available.
Resumo:
Between 1889 and 1916, the U. S. Fish Commission steamer Albatross made numerous trips to waters off southern California, particularly in and near San Diego Bay. The typical pattern for many years was to conduct cruises in waters off the Pacific Northwest or Alaska in summer months and waters off southern California in winter months. The Albatross conducted the first depth soundings and benthic profiles for southern California waters and secured the first samples of many endemic marine animals of this region. Albatross collections formed the basis for numerous definitive monographs of invertebrates and vertebrates that were published in subsequent years. The Albatross anchored in San Diego Bay in 1894, conducting the first biological investigations of the bay, and returned to sample again in many subsequent years. The ship and its crew also examined Cortez and Tanner banks for exploitation potential and conducted the first biological investigations of southern California’s tuna stocks in 1915 and 1916.
Resumo:
After an unusually strong and persistent pattern of atmospheric circulation over the United State[s] in Fall 1985, it became quite changeable (although high amplitude anomalies still prevailed). Following a fall that was cold in the West and warm in the East with heavy precipitation, a high pressure ridge set in over the West during December, with generally light precipitation over most of the country. Throughout the winter, the central North Pacific was very active, with large negative atmospheric pressure anomalies centered at about 45°N, l60°W. This activity may have been encouraged by an enhanced meridional eastern North Pacific sea surface temperature (SST) gradient, with positive SST anomalies in the subtropics and negative anomalies in midlatitudes. However, in January, the western high pressure ridge remained strong and temperatures were remarkably warm, increasing the threat of drought in California after the two previous dry winters. However, in February, storms from a greatly expanded and southerly displaced Aleutian Low broke into the West Coast. An unusual siege from February 11 to February 20 flooded central and northern California, with very heavy precipitation and record to near-record runoff. Upwards of 50 percent of annual average precipitation fell on locations from the upper San Joaquin to the Feather River drainage basins, and the largest flow since observations began in the early 1900's was recorded on the Sacramento River at Sacramento. The atmospheric pattern that was responsible for this remarkable stormy spell developed when the western high pressure retrograded to the northwest into the Aleutians, accompanied by the strengthened and southerly extended storm tract that moved into California. Although exact details vary from case to case, this episode displayed meteorological conditions similar to those in several other historical California winter flood events. These included a long duration of very strong westerly to southwesterly winds over a long subtropical fetch into California. Much of the precipitation during this series of storms was orographically induced by the moisture laden flow rising over the Sierra ranges. Due to the warm air mass, snow levels were relatively high (about 7500 feet) during the heaviest precipitation, resulting in copious runoff.
Resumo:
Juvenile chinook salmon, Oncorhynchus tshawytscha, from natal streams in California’s Central Valley demonstrated little estuarine dependency but grew rapidly once in coastal waters. We collected juvenile chinook salmon at locations spanning the San Francisco Estuary from the western side of the freshwater delta—at the confluence of the Sacramento and San Joaquin Rivers—to the estuary exit at the Golden Gate and in the coastal waters of the Gulf of the Farallones. Juveniles spent about 40 d migrating through the estuary at an estimated rate of 1.6 km/d or faster during their migration season (May and June 1997) toward the ocean. Mean growth in length (0.18 mm/d) and weight (0.02 g/d) was insignificant in young chinook salmon while in the estuary, but estimated daily growth of 0.6 mm/d and 0.5 g/d in the ocean was rapid (P≤0.001). Condition (K factor) declined in the estuary, but improved markedly in ocean fish. Total body protein, total lipid, triacylglycerols (TAG), polar lipids, cholesterol, and nonesterified fatty acids concentrations did not change in juveniles in the estuary, but total lipid and TAG were depleted in ocean juveniles. As young chinook migrated from freshwater to the ocean, their prey changed progressively in importance from invertebrates to fish larvae. Once in coastal waters, juvenile salmon appear to employ a strategy of rapid growth at the expense of energy reserves to increase survival potential. In 1997, environmental conditions did not impede development: freshwater discharge was above average and water temperatures were only slightly elevated, within the species’ tolerance. Data suggest that chinook salmon from California’s Central Valley have evolved a strong ecological propensity for a ocean-type life history. But unlike populations in the Pacific Northwest, they show little estuarine dependency and proceed to the ocean to benefit from the upwelling-driven, biologically productive coastal waters.