952 resultados para Ca2 Release
Resumo:
We investigated whether Ca2+/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 μg/L), and Ca2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca2+]i transients, CaMKIIδB and CaN were evaluated by the Lowry method, [³H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 μg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 μg/L) significantly increased the amplitude of spontaneous [Ca2+]i transients, the total protein content, cell size, and [³H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca2+ chelator. The increases in protein content, cell size and [³H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδB by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca2+]i, CaMKIIδB and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca2+/CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α.
Resumo:
Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca2+ pumping activity.
Resumo:
In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).
Resumo:
Nitric oxide (NO) is a soluble gas that participates in important functions of the central nervous system, such as cognitive function, maintenance of synaptic plasticity for the control of sleep, appetite, body temperature, neurosecretion, and antinociception. Furthermore, during exercise large amounts of NO are released that contribute to maintaining body homeostasis. Besides NO production, physical exercise has been shown to induce antinociception. Thus, the present study aimed to investigate the central involvement of NO in exercise-induced antinociception. In both mechanical and thermal nociceptive tests, central [intrathecal (it) and intracerebroventricular (icv)] pretreatment with inhibitors of the NO/cGMP/KATP pathway (L-NOArg, ODQ, and glybenclamide) prevented the antinociceptive effect induced by aerobic exercise (AE). Furthermore, pretreatment (it, icv) with specific NO synthase inhibitors (L-NIO, aminoguanidine, and L-NPA) also prevented this effect. Supporting the hypothesis of the central involvement of NO in exercise-induced antinociception, nitrite levels in the cerebrospinal fluid increased immediately after AE. Therefore, the present study suggests that, during exercise, the NO released centrally induced antinociception.
Resumo:
This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.
Resumo:
The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.
Resumo:
Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6). Exposure to methylmercury (0-100 μM) was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h) also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.
Resumo:
Microparticles obtained by complex coacervation were crosslinked with glutaraldehyde or with transglutaminase and dried using freeze drying or spray drying. Moist samples presented Encapsulation Efficiency (%EE) higher than 96%. The mean diameters ranged from 43.7 ± 3.4 to 96.4 ± 10.3 µm for moist samples, from 38.1 ± 5.36 to 65.2 ± 16.1 µm for dried samples, and from 62.5 ± 7.5 to 106.9 ± 26.1 µm for rehydrated microparticles. The integrity of the particles without crosslinking was maintained when freeze drying was used. After spray drying, only crosslinked samples were able to maintain the wall integrity. Microparticles had a round shape and in the case of dried samples rugged walls apparently without cracks were observed. Core distribution inside the particles was multinuclear and homogeneous and core release was evaluated using anhydrous ethanol. Moist particles crosslinked with glutaraldehyde at the concentration of 1.0 mM.g-1 protein (ptn), were more efficient with respect to the core retention compared to 0.1 mM.g-1 ptn or those crosslinked with transglutaminase (10 U.g-1 ptn). The drying processes had a strong influence on the core release profile reducing the amount released to all dry samples
Resumo:
Most tropical forage grass species have dormant seeds, which reduce percentages in germination tests. The objective of this study was to evaluate H2SO4 scarification effects on seed dormancy releasing, through germination time (T50) and variability among germination test replicates, in 630, 94 and 82 seed samples of B. brizantha, B. humidicola and P. maximum, respectively, tested at the Central Seed Testing Laboratory, Campinas, Brazil, from 1991 to 1999. Germination tests used two 4 x 100 replicates of intact and scarified seeds (15-, 10-, 5-minute treatments, respectively). Mean germination time (T50) and variability among germination replicates were also analysed. Statistical analysis was performed by t-test paired samples for means. Scarification promoted general decreases in T50, while variability among germination test replicates was reduced in B. brizantha. Scarification increase germination in B. brizantha and P. maximum, but is deleterious in B. humidicola.
Resumo:
Increasing the impulse activity of neurons in vivo over 3 or more days causes a reduction in transmitter release that persists for days or weeks (eg. Mercier and Atwood, 1989). This effect is usually accompanied by decreased synaptic fatigue. These two changes involve presynaptic mechanisms and indicate "long-term adaptation" (LTA) of nerve terminals. Previous experiments have shown that LTA requires extracellular calcium and protein synthesis (eg. Hong and Lnenicka, Soc. Neurosci. Abstr. 17:1322) and appears to involve communication between the cell body and the nerve terminals. The present study examines the possibility that the reduction in transmitter release is caused by an -increase in the calcium buffering ability within the nerve terminals. It examines the responses of adapted and control nerve terminals to exogenously applied calcium buffer, BAPTA-AM, which decreases transmitter release (Robitialle and Charlton, 1992). If LTA increases intrinsic Ca2+-buffering, the membrane permeant form of BAPTA should have less effect on adapted nerve terminals than on controls. Experiments are performed on the phasic abdominal extensor motor neurons of the crayfish, Procambarns clarkii. BAPTA-AM decreases excitatory postsynaptic potentials (EPSP's) of the phasic extensor muscles in a dosedependent manner between 5 and 50 JLM. LTA is elicited by in vivo stimulation at 2.5 Hz for 2-4 h per day over 3 days, which reduces EPSP's by over 50%. Experiments indicate that BAPTA-AM produces no significant change in EPSP reduction in adapted neurons when compared to controls. These results do not support the hypothesis that increased daily activity alters rapid intrinsic calcium buffers, that are able to reduce transmitter output in the same manner as BAPTA.
Resumo:
A media release from Inniskillin Wines announcing the launch of "Alliánce", a joint winemaking venture between Inniskillin and Jaffelin Wines of France.
Resumo:
A News Release draft to be sent to "100 newspapers, radio and television stations (virtually all those with offices within 20 miles of the Lakes), make them available to the Press Gallery, special interest groups, trade publication and Mayors etc. of Great Lake-side communities". The release discusses the need for an upgrade to "the 1972 Canada-U.S. Great Lakes Water Quality agreement". Within the document, O'Sullivan is quoted that the agreement "should be upgraded to become a treaty with the United States, so that after all the effort which has already been put into tyring to clean up the Great Lakes we the provision which provides for cancellation by either party giving twelve months (notice) to do so". The total report is 61 pages in length.
Resumo:
A press release from Youth for Diefenbaker, 1 August 1967. The release reads: "Hamilton Student Appointed Youth for Dief Representative. The youngest delegate to the conservative leadership convention, 15 year old Sean O'Sullivan of Hamilton, has been named Western Ontario representative of the Youth for Diefenbaker movement. This movement was formed in Ottawa to engage support of Canada's young conservatives for John Diefenbaker at the leadership convention. According to Mr. O'Sullivan, there is growing support for Mr. Diefenbaker and he will have an announcement to make in that regard at a press conference on Friday August Fourth at the Connaught Hotel."
Resumo:
A press release assigning Sean O'Sullivan to study the future of the Great Lakes and St. Lawrence Seaway.
Resumo:
Indenture of release regarding a loan of 12, 500 pounds which Samuel Zimmerman (deceased) is said to have lent and advanced to the Woodstock and Lake Erie Railway and Harbour Company. This is put forward by the executors who include: Joseph A. Woodruff, Richard Woodruff, John L. Ranney and Richard Miller. This document releases and exonerates the Railway Company from any debts to the executors. [The outside of the document says 1857, but the actual date is Feb. 10, 1858].