550 resultados para CRANIOFACIAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethanol acts as a teratogen in developing fetuses causing abnormalities of the brain, heart, craniofacial bones, and limb skeletal elements. To assess whether some teratogenic actions of ethanol might occur via dysregulation of msx2 expression, we examined msx2 expression in developing mouse embryos exposed to ethanol on embryonic day (E) 8 of gestation and subjected to whole mount in situ hybridization on E11–11.5 using a riboprobe for mouse msx2. Control mice exhibited expression of msx2 in developing brain, the developing limb buds and apical ectodermal ridge, the lateral and nasal processes, olfactory pit, palatal shelf of the maxilla, the eye, the lens of the eye, otic vesicle, prevertebral bodies (notochord), and endocardial cushion. Embryos exposed to ethanol in utero were significantly smaller than their normal counterparts and did not exhibit expression of msx2 in any structures. Similarly, msx2 expression, as determined by reverse transcription–PCR and Northern blot hybridization, was reduced ≈40–50% in fetal mouse calvarial osteoblastic cells exposed to 1% ethanol for 48 hr while alkaline phosphatase was increased by 2-fold and bone morphogenetic protein showed essentially no change. Transcriptional activity of the msx2 promoter was specifically suppressed by alcohol in MC3T3-E1 osteoblasts. Taken together, these data demonstrate that fetal alcohol exposure decreases msx2 expression, a known regulator of osteoblast and myoblast differentiation, and suggest that one of the “putative” mechanisms for fetal alcohol syndrome is the inhibition of msx2 expression during key developmental periods leading to developmental retardation, altered craniofacial morphogenesis, and cardiac defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of the mammalian secondary palate is a highly regulated and complex process whose impairment often results in cleft palate, a common birth defect in both humans and animals. Loss-of-function analysis has linked a growing number of genes to this process. Here we report that Lhx8, a recently identified LIM homeobox gene, is expressed in the mesenchyme of the mouse palatal structures throughout their development. To test the function of Lhx8 in vivo, we generated a mutant mouse with a targeted deletion of the Lhx8 gene. Our analysis of the mutant animals revealed a crucial role for Lhx8 in palatogenesis. In Lhx8 homozygous mutant embryos, the bilateral primordial palatal shelves formed and elevated normally, but they often failed to make contact and to fuse properly, resulting in a cleft secondary palate. Because development of other craniofacial structures appeared normal, the impaired palatal formation in Lhx8-mutant mice was most likely caused by an intrinsic primary defect in the mesenchyme of the palatal shelves. The cleft palate phenotype observed in Lhx8-mutant mice suggests that Lhx8 is a candidate gene for the isolated nonsyndromic form of cleft palate in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The homozygous disruption of the mouse AP-2 gene yields a complex and lethal phenotype that results from defective development of the neural tube, head, and body wall. The severe and pleiotropic developmental abnormalities observed in the knockout mouse suggested that AP-2 may regulate several morphogenic pathways. To uncouple the individual developmental mechanisms that are dependent on AP-2, we have now analyzed chimeric mice composed of both wild-type and AP-2-null cells. The phenotypes obtained from these chimeras indicate that there is an independent requirement for AP-2 in the formation of the neural tube, body wall, and craniofacial skeleton. In addition, these studies reveal that AP-2 exerts a major influence on eye formation, which is a critical new role for AP-2 that was masked previously in the knockout mice. Furthermore, we also have uncovered an unexpected influence of AP-2 on limb pattern formation; this influence is typified by major limb duplications. The range of phenotypes observed in the chimeras displays a significant overlap with those caused by teratogenic levels of retinoic acid, strongly suggesting that AP-2 is an important component of the mechanism of action of this morphogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although extracellular application of lysophosphatidic acid (LPA) has been extensively documented to produce a variety of cellular responses through a family of specific G protein-coupled receptors, the in vivo organismal role of LPA signaling remains largely unknown. The first identified LPA receptor gene, lpA1/vzg-1/edg-2, was previously shown to have remarkably enriched embryonic expression in the cerebral cortex and dorsal olfactory bulb and postnatal expression in myelinating glia including Schwann cells. Here, we show that targeted deletion of lpA1 results in approximately 50% neonatal lethality, impaired suckling in neonatal pups, and loss of LPA responsivity in embryonic cerebral cortical neuroblasts with survivors showing reduced size, craniofacial dysmorphism, and increased apoptosis in sciatic nerve Schwann cells. The suckling defect was responsible for the death among lpA1(−/−) neonates and the stunted growth of survivors. Impaired suckling behavior was attributable to defective olfaction, which is likely related to developmental abnormalities in olfactory bulb and/or cerebral cortex. Our results provide evidence that endogenous lysophospholipid signaling requires an lp receptor gene and indicate that LPA signaling through the LPA1 receptor is required for normal development of an inborn, neonatal behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In humans, SOX9 heterozygous mutations cause the severe skeletal dysmorphology syndrome campomelic dysplasia. Except for clinical descriptions, little is known about the pathogenesis of this disease. We have generated heterozygous Sox9 mutant mice that phenocopy most of the skeletal abnormalities of this syndrome. The Sox9+/− mice died perinatally with cleft palate, as well as hypoplasia and bending of many skeletal structures derived from cartilage precursors. In embryonic day (E)14.5 heterozygous embryos, bending of radius, ulna, and tibia cartilages was already prominent. In E12.5 heterozygotes, all skeletal elements visualized by using Alcian blue were smaller. In addition, the overall levels of Col2a1 RNA at E10.5 and E12.5 were lower than in wild-type embryos. We propose that the skeletal abnormalities observed at later embryonic stages were caused by delayed or defective precartilaginous condensations. Furthermore, in E18.5 embryos and in newborn heterozygotes, premature mineralization occurred in many bones, including vertebrae and some craniofacial bones. Because Sox9 is not expressed in the mineralized portion of the growth plate, this premature mineralization is very likely the consequence of allele insufficiency existing in cells of the growth plate that express Sox9. Because the hypertrophic zone of the heterozygous Sox9 mutants was larger than that of wild-type mice, we propose that Sox9 also has a role in regulating the transition to hypertrophic chondrocytes in the growth plate. Despite the severe hypoplasia of cartilages, the overall organization and cellular composition of the growth plate were otherwise normal. Our results suggest the hypothesis that two critical steps of the chondrocyte differentiation pathway are sensitive to Sox9 dosage. First, an early step presumably at the stage of mesenchymal condensation of cartilage primordia, and second, a later step preceding the transition of chondrocytes into hypertrophic chondrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Msx1 is a key factor for the development of tooth and craniofacial skeleton and has been proposed to play a pivotal role in terminal cell differentiation. In this paper, we demonstrated the presence of an endogenous Msx1 antisense RNA (Msx1-AS RNA) in mice, rats, and humans. In situ analysis revealed that this RNA is expressed only in differentiated dental and bone cells with an inverse correlation with Msx1 protein. These in vivo data and overexpression of Msx1 sense and AS RNA in an odontoblastic cell line (MO6-G3) showed that the balance between the levels of the two Msx1 RNAs is related to the expression of Msx1 protein. To analyze the impact of this balance in the Msx-Dlx homeoprotein pathway, we analyzed the effect of Msx1, Msx2, and Dlx5 overexpression on proteins involved in skeletal differentiation. We showed that the Msx1-AS RNA is involved in crosstalk between the Msx-Dlx pathways because its expression was abolished by Dlx5. Msx1 was shown to down-regulate a master gene of skeletal cells differentiation, Cbfa1. All these data strongly suggest that the ratio between Msx1 sense and antisense RNAs is a very important factor in the control of skeletal terminal differentiation. Finally, the initiation site for Msx1-AS RNA transcription was located by primer extension in both mouse and human in an identical region, including a consensus TATA box, suggesting an evolutionary conservation of the AS RNA-mediated regulation of Msx1 gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante o desenvolvimento da oclusão, a instalação de maloclusões podem resultar em desarmonias dento faciais de natureza e severidade diversas, podendo provocar alterações no desenvolvimento crânio facial, dentre as estruturas envolvidas as Articulações Temporo Mandibulares (ATM), podem sofrer alguma influência, dessa forma a avaliação desta região, no aspecto morfológico e funcional, constituí tema de interesse, sempre que levados em conta os aspectos funcionais da oclusão. A relação entre a forma e a função, tanto das cabeças da mandíbula, bem como o contorno da fossa mandibular com as maloclusões ainda é controversa e não está compreendida por completo, porém a literatura sobre o assunto, demonstra correlação entre a instalação de maloclusões e modificações neste sistema, mesmo que algumas alterações não sejam de ordem estatística e em amostras de indivíduos em tenra idade, as mesmas podem comprometer o desenvolvimento adequado em indivíduos adultos ou mesmo adultos jovens. Tendo como propósito nesse estudo a avaliação das cabeças da mandíbula quanto ao volume e superficíe dos lados direito e esquerdo, cruzado e não cruzado, a amostra selecionada foi de 20 indivíduos com mordida cruzada posterior unilateral, com idades entre 06 e 09 anos de idade, utilizando imagens de tomografia computadorizada por feixe cônico, imagens obtidas por um equipamento modelo i- Cat, sendo utilizado na reformatação e manipulação das imagens o programa computacional - NemoCeph 3D® versão 11.5. Nas medições propostas para esse estudo, utilizou-se o teste t pareado de Student para amostras com distribuição normal. Na observação das tabelas e seus respectivos gráficos, podemos verificar que na comparação entre os lados direito e esquerdo, e cruzado e não cruzado das cabeças da mandíbula, com relação ao volume e superfície, existem diferenças numéricas entre elas, porém não pode ser observado diferenças estatísticas significantes, nessa amostra especifica com a metodologia empregada para esse estudo. Assim foi possível concluir que nas Mordidas Cruzadas Posteriores Unilaterais as cabeças da mandíbula tanto em seu volume como em sua superfície não apresentaram diferenças estatisticamente significantes na amostra estudada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As anomalias craniofaciais ocasionam comprometimentos estéticos e funcionais com grande impacto na saúde e na integração social da criança, com interferência no desenvolvimento global e social. Das anomalias craniofaciais este estudo abordou as Fissuras Labiopalatinas (FLP) e o Espectro Óculo Aurículo Vertebral (EOAV). As FLP constituem malformações resultantes de falta do fechamento completo dos tecidos que compõe o lábio e o palato. O EOAV, também conhecido como Síndrome de Goldenhar, é uma anomalia congênita de etiologia desconhecida, com manifestação genética variável e de causa bastante heterogênea. Conhecer as habilidades funcionais e o impacto destas no desenvolvimento global de crianças com EOAV e FLP pode otimizar o desenvolvimento de programas de prevenção e intervenção para promover a saúde e a integração social destes indivíduos. Este estudo foi delineado com objetivo de verificar e comparar o desempenho em habilidades funcionais quanto ao desempenho nas áreas de autocuidado, mobilidade, função social e nível de independência entre crianças com EOAV, crianças com FLP e um grupo comparativo, de crianças sem anomalias. O modelo de pesquisa foi observacional descritivo transversal com uma casuística de 39 pais/responsáveis de crianças na faixa etária entre três anos e sete anos e seis meses, de ambos os gêneros. Foram convidados para participar pais/responsáveis de crianças em tratamento no Hospital de Reabilitação de Anomalias Craniofaciais da Universidade e São Paulo (HRAC-USP) os quais foram divididos em três grupos: dois experimentais e um grupo comparativo. O instrumento para coleta dos dados das habilidades funcionais foi o Pediatric Evaluation of Disability Inventory (PEDI), em sua versão adaptada para o português. A avaliação é realizada por meio de entrevista com o cuidador, o qual deve saber informar sobre o desempenho da criança em atividades e tarefas típicas da rotina diária. Os dados foram apresentados por análise descritiva com medidas de tendência central (média aritmética), dispersão (desvio-padrão) e distribuição de frequência, nas variáveis: idades, gênero e nível socioeconômico da família e caracterização da casuística. Para as análises das pontuações bruta e normativa do questionário PEDI no que se refere às habilidades funcionais e a assistência do cuidador nas três áreas de função autocuidado, mobilidade e função social, foi utilizado o teste de variância One Way, e para o teste de normalidade foi utilizado Shapiro Wilk para variável dependente. A análise comparativa foi realizada pelo teste de Kruskal-Wallis, adotando-se o valor de significância de p< 0,05. Os resultados deste estudo na análise comparativa nas habilidades funcionais na mobilidade, houve diferença estatisticamente significante na comparação entre os grupos GC vs GEEOAV, no escore bruto, e entre os grupos GC vs GEEOAV e GC vs GEFLP, no escore normativo.Na assistência do cuidador no autocuidado, houve diferença estatisticamente significante na comparação entre os grupos GC vs GEEOAV, no escore normativo. Na assistência do cuidador na mobilidade, houve diferença estatisticamente significante na comparação entre os grupos GC vs GEEOAV nos escores bruto e normativo.Na assistência do cuidador na função social houve diferença estatisticamente significante na comparação entre os grupos GC vs GEFLP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth hormone (GH) stimulates mandibular growth but its effect on the mandibular condylar cartilage is not well. understood. Objective: This study was designed to understand the influence of GH on mitotic activity and on chondrocytes maturation. The effect of GH on cartilage thickness was also determined. Design: An animal model witt differences in GH status was determined by comparing mutant Lewis dwarf rats with reduced pituitary GH synthesis (dwarf), with normal rats and dwarf animals treated with GH. Six dwarf rats were injected with GH for 6 days, while other six normal rats and six dwarf rats composed other two groups. Mandibular condylar tissues were processed and stained for Herovici's stain and immunohistochemistry, for proliferating cell nuclear antigen (PCNA) and alkaline phosphatase (ALP). Measurements of cartilage thickness as well as the numbers of immunopositive cells for each antibody were analysed by one-way analysis of variance. Results: Cartilage thickness was significantly reduced in the dwarf animals treated with GH. PCNA expression was significant lower in the dwarf rats, but significantly increased when these animals were treated with GH. ALP expression was significant higher in the dwarf animals, while it was significantly reduced in the dwarf animals treated with GH. Conclusions: The results from this study showed that GH stimulates mitotic activity and delays cartilage cells maturation in the mandibular condyte. This effect at the cellular Level may produce changes in the cartilage thickness. (C) 2004 Elsevier Ltd. All rights reserved.