917 resultados para COMPUTER-VISION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundamentos: El elevado número de personas que trabajando con ordenador utiliza lentes de contacto plantea la cuestión sobre si la suma de estos dos factores de riesgo para la salud visual puede originar un agravamiento del Síndrome Visual Informático. El objetivo de esta revisión es sintetizar el conocimiento científico sobre las alteraciones oculares y visuales relacionadas con la exposición a ordenador en usuarios de lentes de contacto. Métodos: Revisión de artículos científicos (2003-2013) en español e inglés, realizando una búsqueda bibliográfica, en Medline a través de PubMed y en Scopus. Resultados: La búsqueda inicial aportó 114 trabajos, después de aplicar criterios de inclusión/exclusión se incluyeron seis artículos. Todos ellos ponen de manifiesto que las alteraciones al utilizar el ordenador son más frecuentes en las personas usuarias de lentes de contacto, con prevalencias que oscilan de 95,0% al 16,9% que en las que no utilizan lentes de contacto, cuya prevalencia va del 57,5% al 9,9% y con una probabilidad cuatro veces mayor de padecer ojo seco [OR: 4,07 (IC 95%: 3,52-4,71)]. Conclusiones: Las personas usuarias de ordenador padecen más alteraciones oculares y visuales cuando además son usuarias de lentes de contacto, pero los estudios son escasos y poco contundentes. Se precisan nuevas investigaciones que analicen la influencia según los tipos de lentes y sus condiciones de uso, tanto en la sintomatología como en la calidad de la lágrima y la superficie ocular. Las lentes de hidrogel de silicona son las que se asocian a mayor confort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Al giorno d’oggi quasi tutte le persone possiedono un mezzo motorizzato che utilizzano per spostarsi. Tale operazione, che risulta semplice per una persona, può essere compiuta da un robot o un autoveicolo in modo autonomo? La risposta a questa domanda è si, ma se ad una persona serve solo un po’ di pratica per guidare, questa azione non risulta altrettanto immediata per dei veicoli motorizzati. In soccorso ad essi vi è la Computer Vision, un ramo dell’informatica che, in un certo senso, rende un elaboratore elettronico in grado di percepire l’ambiente circostante, nel modo in cui una persona fa con i propri occhi. Oggi ci concentreremo su due campi della computer vision, lo SLAM o Simultaneous Localization and Mapping, che rende un robot in grado di mappare, attraverso una camera, il mondo in cui si trova ed allo stesso tempo di localizzare, istante per istante, la propria posizione all’interno di esso, e la Plane Detection, che permette di estrapolare i piani presenti all’interno di una data immagine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beyond the inherent technical challenges, current research into the three dimensional surface correspondence problem is hampered by a lack of uniform terminology, an abundance of application specific algorithms, and the absence of a consistent model for comparing existing approaches and developing new ones. This paper addresses these challenges by presenting a framework for analysing, comparing, developing, and implementing surface correspondence algorithms. The framework uses five distinct stages to establish correspondence between surfaces. It is general, encompassing a wide variety of existing techniques, and flexible, facilitating the synthesis of new correspondence algorithms. This paper presents a review of existing surface correspondence algorithms, and shows how they fit into the correspondence framework. It also shows how the framework can be used to analyse and compare existing algorithms and develop new algorithms using the framework's modular structure. Six algorithms, four existing and two new, are implemented using the framework. Each implemented algorithm is used to match a number of surface pairs. Results demonstrate that the correspondence framework implementations are faithful implementations of existing algorithms, and that powerful new surface correspondence algorithms can be created. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of energy minimisation methods for stereo matching has been demonstrated to produce high quality disparity maps. However the majority of these methods are known to be computationally expensive, requiring minutes or even hours of computation. We propose a fast minimisation scheme that produces strongly competitive results for significantly reduced computation, requiring only a few seconds of computation. In this paper, we present our iterated dynamic programming algorithm along with a quadtree subregioning process for fast stereo matching.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major impediment to developing real-time computer vision systems has been the computational power and level of skill required to process video streams in real-time. This has meant that many researchers have either analysed video streams off-line or used expensive dedicated hardware acceleration techniques. Recent software and hardware developments have greatly eased the development burden of realtime image analysis leading to the development of portable systems using cheap PC hardware and software exploiting the Multimedia Extension (MMX) instruction set of the Intel Pentium chip. This paper describes the implementation of a computationally efficient computer vision system for recognizing hand gestures using efficient coding and MMX-acceleration to achieve real-time performance on low cost hardware.