925 resultados para COMPATIBLE POLYMER BLENDS
Resumo:
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.
Resumo:
This research paper reports on the production of a biocompatible and biodegradable material to be used in a polymer stent used for counteracting the occurrence of anastomotic leakage following gastrointestinal surgery. Chitosan was blended with polycaprolactone in a solvent mixture of acetic acid and water. Membranes were formed with a range of 50/50%, 60/40%, 65/35%, 70/30% and 80/20% polycaprolactone/chitosan. The tensile properties of the blends were examined over a time period to access material degradation. In addition the biocompatibilities of the polycaprolactone/chitosan blends were tested for cytotoxic effect using primary tendon fibroblastic cells. This research concluded that the polycaprolactone/chitosan was non-toxic to the fibroblasts cells in-vitro. Analysis of the mechanical properties of the blends showed a range of mechanical strengths and polymer life spans. Overall, blends of 65/35%, 70/30% and 80/20% polycaprolactone/chitosan emerged as possible candidates for the production of a gastrointestinal stent. © 2011 Inderscience Enterprises Ltd.
Resumo:
Blends of PET with the different commercial co(ter)polymer compatibilisers were prepared and the effect of their glycidyl methacrylate (GMA) content and viscosity on the blend properties was determined. The efficiency of compatibilisation of the commercial co(ter)polymer in the ternary blends was examined and compared. For all the ternary blends (PET/EPR/co(ter)polymer, the PET content was fixed at 70 wt% of the total weight of the blends. Higher compatibilisation effect was found in PET/EPR blends compatibilised with the commercial copolymer ethylene glycidyl methacrylate (E-GMA8(5)) containing 8% GMA and MFI = 5 (g/10min) was achieved as reflected in the observed higher elongation at break when compared to corresponding blends compatibilised with the methyl acrylate containing terpolymer ethylene methyl acrylate glycidyl methacrylate EM-GMA8(6) containing 8% GMA and MFI = 6 (g/10min). The presence of methyl acrylate ester groups in the commercial terpolymer EM-GMA (containing similar amount of GMA and same MFI) resulted in low level of compatibilisation due to the possibility of a higher extent of branching and crosslinking resulting from the presence of the ester groups and this would be responsible for the observed lower elongation, and the less favourable morphology observed. Further, the more bulky structure of the terpolymer compared to the copolymer would give rise to a more difficult migration to the interface, thus lowering the efficiency of compatibilisation. However, the morphology of both blends compatibilised with either the terpolymer or the copolymer were not significantly different.
Resumo:
Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. ^ Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. ^ Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. ^ A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. ^ Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the ' a&d12; ' position on amylose exhibited a maximal increase of 17.1 kcal/mol as compared with the starch/PPC-MA blend. ^ Conclusions. ROM was found to be a more effective compatibilizer in improving the favorable interactions between starch and PPC as compared to MA. The ' a&d12; ' position was found to be the most favorable attachment point of ROM to amylose for stable blend formation with PPC.^
Resumo:
Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.