629 resultados para CHORIOVITELLINE PLACENTA
Resumo:
Un total de 74 conejas nulíparas de 8 semanas de edad se distribuyeron al azar en dos grupos desde la recría hasta el primer parto. Se alimentaron con dos piensos isofibrosos, isoenergéticos e isoproteicos formulados con dos fuentes de grasa diferentes: manteca (grupo Control, n=34) y un suplemento a base de aceite de salmón rico en ácidos grasos poliinsatura-dos (AGPI) n-3 (grupo AGPI, n= 34) con un nivel de inclusión del 6% (30 g/kg). Durante la recría recibieron 130 g/día y 10 días antes de la inseminación se alimentaron ad libitum. Las tres primeras semanas de gestación, se restringieron de nuevo y consumieron pienso ad libitum la última semana de la misma. De cada grupo, 5 animales fueron eutanasiados el día 28 de gestación para determinar el desarrollo feto-placentario, y en el resto, la gestación se llevó a término para determinar los parámetros productivos de fertilidad y prolificidad. El consumo de las conejas suplementadas fue menor que el de las controles durante su disposición ad libitum. Aunque no hubo diferencias en el recuento de cuerpos lúteos ni de fetos el día 28 de gestación, el grosor de la placenta fetal (laberinto) y los fetos de las conejas suplementadas fueron significativamen -te mayores a los del grupo control. Hecho que se explicaría por la correlación positiva observada entre ambos parámetros y que no se observó con la parte maternal (decidua) de la placenta. La suplementación del pienso con AGPI n-3 también mejoró el número de nacidos vivos y muertos. En conclusión, la inclusión de AGPI n-3 aunque disminuye el consumo, mejora el desarrollo feto-placentario y los parámetros productivos de las conejas.
Resumo:
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64’s steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.
Resumo:
Inheritance of an inactivated form of the VHL tumor suppressor gene predisposes patients to develop von Hippel–Lindau disease, and somatic VHL inactivation is an early genetic event leading to the development of sporadic renal cell carcinoma. The VHL gene was disrupted by targeted homologous recombination in murine embryonic stem cells, and a mouse line containing an inactivated VHL allele was generated. While heterozygous VHL (+/−) mice appeared phenotypically normal, VHL −/− mice died in utero at 10.5 to 12.5 days of gestation (E10.5 to E12.5). Homozygous VHL −/− embryos appeared to develop normally until E9.5 to E10.5, when placental dysgenesis developed. Embryonic vasculogenesis of the placenta failed to occur in VHL −/− mice, and hemorrhagic lesions developed in the placenta. Subsequent hemorrhage in VHL −/− embryos caused necrosis and death. These results indicate that VHL expression is critical for normal extraembryonic vascular development.
Resumo:
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.
Resumo:
High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.
Resumo:
Acknowledgements This paper belongs to the studies carried out by Kuopio Birth Cohort consortium (www.KuBiCo.fi). We thank Ms Pirjo Hänninen for expert laboratory assistance at University of Eastern Finland, Ms Margaret Fraser, Dr Panagiotis Filis and the Proteomics Core Facility at the University of Aberdeen for their expert assistance. We also thank the staff of the Department of Obstetrics and Gynaecology in Kuopio University Hospital for skilful collection of these specimens. This work was supported by the Academy of Finland [122859/2007], the Helena Vuorenmies Foundation, the Emil Aaltonen Foundation, the University of Eastern Finland Doctoral Programme in Drug Research and the Medical Research Council, UK [MR/L010011/1]. The funders played no roles in study design, data collection, data analysis, manuscript preparation and/or publication decisions.
Resumo:
The Epstein–Barr virus-induced gene 3 (EBI3) is a novel soluble hematopoietin component related to the p40 subunit of interleukin 12 (IL-12). When EBI3 was expressed in cells, it accumulated in the endoplasmic reticulum and associated with the molecular chaperone calnexin, indicating that subsequent processing and secretion might be dependent on association with a second subunit. Coimmunoprecipitations from lysates and culture media of cells transfected with expression vectors for EBI3 and/or the p35 subunit of IL-12 now reveal a specific association of EBI3 with p35. Coexpression of EBI3 and p35 mutually facilitates their secretion. Most importantly, a large fraction of p35 in extracts of the trophoblast component of a human full-term normal placenta specifically coimmunoprecipitated with EBI3, indicating that EBI3 is in a heterodimer with p35, in vivo. Because EBI3 is expressed in EBV-transformed B lymphocytes, tonsil, spleen, and placental trophoblasts, the EBI3/p35 heterodimer is likely to be an important immunomodulator.
Resumo:
A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23–24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.
Resumo:
The enzyme poly(ADP-ribose) polymerase (Parp) catalyzes poly(ADP-ribosyl)ation reaction and is involved in DNA repair and cell death induction upon DNA damages. Meanwhile, poly(ADP-ribosyl)ation of chromosome-associated proteins is suggested to be implicated in the regulation of gene expression and cellular differentiation, both of which are important in tumorigenesis. To investigate directly the role of Parp deficiency in tumorigenicity and differentiation of embryonic stem (ES) cells during tumor formation, studies were conducted by using wild-type J1 (Parp+/+) ES cells and Parp+/− and Parp−/− ES clones generated by disrupting Parp exon 1. These ES cells, irrespective of the Parp genotype, produced tumors phenotypically similar to teratocarcinoma when injected s.c. into nude mice. Remarkably, all tumors derived from Parp−/− clones contained syncytiotrophoblastic giant cells (STGCs), which possess single or multiple megalo-nuclei. The STGCs were present within large areas of intratumoral hemorrhage. In contrast, neither STGC nor hemorrhage was observed in tumors of both wild-type J1 cells and Parp+/− clones. Electron microscopic examination showed that the STGCs possess microvilli on the cell surface and contained secretory granules in the cytoplasm. Furthermore, the cytoplasms of STGCs were strongly stained with antibody against mouse prolactin, which could similarly stain trophoblasts in placenta. These morphological and histochemical features indicate that the STGCs in teratocarcinoma-like tumors derived from Parp−/− clones belong to the trophoblast cell lineage. Our findings thus suggest that differentiation of ES cells into STGCs was possibly induced by the lack of Parp during the development of teratocarcinoma.