976 resultados para CELLULASE 5A
Resumo:
The aim of this study was to know the yeast biodiversity from fresh olive (Olea europaea L.) fruits, olive paste (crush olives) and olive pomace (solid waste) from Arbequina and Cornicabra varieties. Yeasts were isolated from fruits randomly harvested at various olive groves in the region of Castilla La Mancha (Spain). Olive paste and pomace, a byproduct of the processing of this raw material, were also collected in sterile flasks from different oil mills. Molecular identification methodology used included comparison of polymerase chain reaction (PCR) amplicons of their 5.8S rRNA gene and internal transcribed spacers ITS1 and ITS2 followed by restriction pattern analysis (RFLP). For some species, sequence analysis of the 5.8S rDNA gene was necessary. The results were compared to sequences held in public databases (BLAST). These techniques allowed to identify fourteen different species of yeasts, belonging to seven different genera (Zygosaccharomyces, Pichia, Lachancea, Kluyveromyces, Saccharomyces, Candida, Torulaspora) from the 108 yeast isolates. Species diversity was thus considerable: Pichia caribbica, Zygosaccharomyces fermentati (Lachancea fermentati) and Pichia holstii (Nakazawaea holstii) were the most commonly isolated species, followed by Pichia mississippiensis, Lachancea sp., Kluyveromyces thermotolerans and Saccharomyces rosinii. The biotechnological properties of these isolates, was also studied. For this purpose, the activity of various enzymes (beta-glucosidase, beta-glucanase, carboxymethylcellulase, polygalacturonase, peroxidase and lipase) was evaluated. It was important that none of species showed lipase activity, a few had cellulase and polygalacturonase activities and the majority of them presented beta-glucanase, beta-glucosidase and peroxidase activities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Many microorganisms that decompose lignocellulosic material are being studied as producers of enzymes to perform enzymatic hydrolysis of the lignocellulosic material present in residues from the agroindustries. Although the cellulose and hemicellulose present in these materials have their value for feeding cattle, their bioavailability requires breakdown of the bonds with indigestible lignin. Predigestion of such materials with ligninases, xylanases and pectinases (cellulase free) may transform the lignocellulosic substrate into a feed with greater digestibility and higher quality for ruminants.. This review provides an overview of variables to be considered in the utilization of fungal plantdepolymerizing enzymes produced by solid-state fermentation from agricultural production residues in Brazil. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [N-epsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain. Growth-supporting activity was abolished in only a few mutant eIF5As (K47D, G49A, K50A, K50D, K50I, K50R, G52A and K55A), with substitutions at or near the hypusine modification site or with truncation of 21 amino acids from either the N-terminus or C-terminus. The inactivity of the Lys50 substitution proteins is obviously due to lack of deoxyhypusine modification. In contrast, K47D and G49A were effective substrates for deoxyhypusine synthase, yet failed to support growth, suggesting critical roles of Lys47 and Gly49 in eIF5A activity, possibly in its interaction with effector(s). By use of a UBHY-R strain harboring genetically engineered unstable eIF5A, we present evidence for the primary function of eIF5A in protein synthesis. When selected eIF5A mutant proteins were tested for their activity in protein synthesis, a close correlation was observed between their ability to enhance protein synthesis and growth, lending further support for a central role of eIF5A in translation.
Resumo:
Leucocoprinus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens rubropilosa, is able to degrade efficiently cellulose, microcrystaline cellulose, carboximethylcellulose, and cellobiose. Analysis of the degradation products indicate that the fungus produce extracellular β-glucosidase, exo- and endo-glucanase. The importance of cellulose degradation to the association of fungus and ant is discussed.
Resumo:
Strains of Trichoderma pseudokoningii are promising objects for genetic studies and cellulase production. Auxotrophic mutants with deficiencies in the biosynthesis of aminoacids, nucleotides and vitamins (up to five markers) in addition to morphological aspects like conidial colour were obtained from two strains of double auxotrophic mutants using UV radiation. In order to compare the cellulolytic capabilities of the T. pseudokoningii (wild type strain), some of its mutants and T. reesei QM9414 we performed semiquantitative cellulase assays and quantitative determination of the enzymes exoglucanase and endoglucanase. The semiquantitative test showed that the strains with minimal mycelial growth rate were better producers. Both tests revealed that two of the studied mutants, TG3 and TG4 presented a yield higher than the wild type, reaching 30% more exoglucanase and 70% more endoglucanase. These results indicate that the wild type was improved for cellulase production. Highly significant values of correlation were found for exoglucanase and endoglucanase activities, suggesting that these enzymes may be co-regulated in T. pseudokoningii.
Resumo:
The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.
Mapping eIF5A binding sites for Dys1 and Lia1: In vivo evidence for regulation of eIF5A hypusination
Resumo:
The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.
Resumo:
The purpose of this study was to show anatomical variations in permanent maxillary molars. Two clinical cases of four-rooted maxillary molars and a macroscopic study of an extracted tooth, showing a five-rooted maxillary molar, are presented.
Resumo:
Cellulose is the most abundant vegetable organic compound, being derived mainly from plant residues. The decomposition of sugar-cane (Saccharum officinarum L.) straw was studied in a period up to 90 days, through variables related to the carbon cycle, such as respiratory activity and CM-cellulase (CM, cellulose microcrystalline) and CMC-cellulase (CMC, carboxymethylcellulose) activities. The treatments consisted of 0, 0.5 and 1.0% of straw, in the presence and absence of vinasse (a sugar-cane alcohol industry byproduct) and nitrogen fertilizer. The respiratory and cellulase activities increased up to the 14th day of incubation and later decreased. The respiratory activity was 1.9 and 2.3 fold larger (P < 0.05) in the soil with 0.5 and 1.0% of straw added, respectively, in relation to the control. CM- and CMC- cellulase activities also increased from 1.8 to 2.9 and from 2.3 to 2.7 fold, respectively. The vinasse addition enhanced CO 2 production and CM-cellulase activity, however, no significant effect was observed on CMC-cellulase activity. The addition of N reduced both respiratory and cellulase activities. The decomposition of the sugar-cane straw may enhance soil nutrient cycling increasing agricultural production. © 2006 Instituto de Investigaciones Agropecuarias, INIA.
Resumo:
The putative translation initiation factor 5A (eIF5A) is a highly abundant and conserved protein in all eukaryotes and archaebacteria. This factor is essential for cell viability and is the only cellular protein known to contain the unusual amino acid residue hypusine. In Saccharomyces cerevisiae eIF5A is expressed in aerobic conditions by the gene TIF51A. Although eIF5A has been known for almost 30 years, the biological role of this protein is still obscure. This article reviews the research on the function of eIF5A, discussing the evidence for its involvement in various steps of mRNA metabolism, including translation initiation, nucleocytoplasmic transport and mRNA decay. Moreover, it indicates other studies that have associated eIF5A with cell proliferation and cell cycle progression. Finally, this review presents recent results obtained in our laboratory that reemphasize the role of eIF5A in the translation scenario. Further experiments will be necessary to define the role played by eIF5A in the translational machinery.
Resumo:
This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme, remaining 100% active when incubated at 75°C for 1 h. © 2007 Humana Press Inc.
Resumo:
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/ S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking. ©FUNPEC-RP.
Resumo:
Two tests were performed. In the first, resistance to Didymella bryoniae was determined for the following genotypes: the pumpkins 'Ikky', 'Agroceres', 'Kirameki' and 'Shelper', watermelon progenies 1a, 2a, 3a, 5a, 1b, 2b, 3b and 5b, and 'Gherkin' (C. anguria). The plants were inoculated with the fungus during transplanting. The evaluations of the test were performed every 15 d according to a scoring scale adopted by Dusi et al. (1994). The second test examined compatibility among the rootstocks x grafts, and their effects on production. The rootstocks, 5 pumpkins including 'Ikky', 'Agroceres', 'Kirameki', 'Shelper', six watermelon progenies 1a, 2a, 5a, 1b, 2b and 5b, and one 'Gherkin', were planted one week before planting of the grafted 'Bônus No. 2' melon. The experiments were carried out with 12 treatments, including the control ('Bônus No. 2') with 3 replications with 14 grafted plants per each replication. For the first test, the first three evaluations (at 15, 30 and 45 d after inoculation) did not show characteristic lesions of stem canker, but progeny 3b was found to be susceptible in evaluations performed at 60 and 75 d after inoculation. Progeny 3a demonstrated intermediate susceptibility, while progenies 1a, 2a, 5a, 1b, 2b and 5b, the pumpkins 'Kirameki', 'Shelper', 'Ikky' and 'Agroceres', and 'Gherkin', showed resistance to Didymella bryoniae. In the second test, watermelon progenies 1a, 5a, 1b and 2b, and the pumpkins 'Kirameki', 'Shelper', 'Ikky' and 'Agroceres' showed a level of grafting success of 100%, while results with progenies 2a and 5b, and 'Gherkin' were different in grafting success, respectively 91.67, 98.33 and 43.33%. For other fruit parameters, weight, longitudinal and transverse diameters, pulp thickness and level of total soluble solids, there were no differences among the treatments.