650 resultados para Budding brass knuckles
Resumo:
The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.
Resumo:
Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve “alanine scan” alleles of the single yeast actin gene (ACT1) were tested for effects on filamentation, unipolar budding, agar invasion, and cell elongation. Some act1 mutations affect all phenotypes, whereas others affect only one or two aspects of PH growth. Tests of intragenic complementation among specific act1 mutations support the phenotypic evidence for multiple actin functions in filamentous growth. We present evidence that interaction between actin and the actin-binding protein fimbrin is important for PH growth and suggest that association of different actin-binding proteins with actin mediates the multiple functions of actin in filamentous growth. Furthermore, characterization of cytoskeletal structure in wild type and act1/act1 mutants indicates that PH cell morphogenesis requires the maintenance of a highly polarized actin cytoskeleton. Collectively, this work demonstrates that actin plays a central role in fungal dimorphism.
Resumo:
The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (Winey et al., 1991). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.
Resumo:
The Cdc6 protein of budding yeast and its homologues in other species play an essential role in the initiation of DNA replication. A cDNA encoding a human homologue of Cdc6 (HsCdc6) has been cloned and expressed as a fusion protein in a soluble and functionally active form. The purified protein bound specifically to ATP and slowly hydrolyzed it, whereas HsCdc6 mutants containing amino acid substitutions in the Walker A or B motifs were defective. The mutant proteins retained the ability to bind HsOrc1 and HsCdc6 but displayed aberrant conformations in the presence of nucleotides. Microinjection of either mutant protein into human cells in G1 inhibited DNA replication, suggesting that ATP binding and hydrolysis by HsCdc6 are essential for DNA replication.
Resumo:
Cell cycle progression is controlled by the sequential functions of cyclin-dependent kinases (cdks). Cdk activation requires phosphorylation of a key residue (on sites equivalent to Thr-160 in human cdk2) carried out by the cdk-activating kinase (CAK). Human CAK has been identified as a p40MO15/cyclin H/MAT1 complex that also functions as part of transcription factor IIH (TFIIH) where it phosphorylates multiple transcriptional components including the C-terminal domain (CTD) of the large subunit of RNA polymerase II. In contrast, CAK from budding yeast consists of a single polypeptide (Cak1p), is not a component of TFIIH, and lacks CTD kinase activity. Here we report that Cak1p and p40MO15 have strikingly different substrate specificities. Cak1p preferentially phosphorylated monomeric cdks, whereas p40MO15 preferentially phosphorylated cdk/cyclin complexes. Furthermore, p40MO15 only phosphorylated cdk6 bound to cyclin D3, whereas Cak1p recognized monomeric cdk6 and cdk6 bound to cyclin D1, D2, or D3. We also found that cdk inhibitors, including p21CIP1, p27KIP1, p57KIP2, p16INK4a, and p18INK4c, could block phosphorylation by p40MO15 but not phosphorylation by Cak1p. Our results demonstrate that although both Cak1p and p40MO15 activate cdks by phosphorylating the same residue, the structural mechanisms underlying the enzyme-substrate recognition differ greatly. Structural and physiological implications of these findings will be discussed.
Resumo:
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase–cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.
Resumo:
The heat-shock protein 90 (Hsp90) is a cytosolic molecular chaperone that is highly abundant even at normal temperature. Specific functions for Hsp90 have been proposed based on the characterization of its interactions with certain transcription factors and kinases including Raf in vertebrates and flies. We therefore decided to address the role of Hsp90 for MAP kinase pathways in the budding yeast, an organism amenable to both genetic and biochemical analyses. We found that both basal and induced activities of the pheromone-signaling pathway depend on Hsp90. Signaling is defective in strains expressing low levels or point mutants of yeast Hsp90 (Hsp82), or human Hsp90β instead of the wild-type protein. Ste11, a yeast equivalent of Raf, forms complexes with wild-type Hsp90 and depends on Hsp90 function for accumulation. For budding yeast, Ste11 represents the first identified endogenous “substrate” of Hsp90. Moreover, Hsp90 functions in steroid receptor and pheromone signaling can be genetically separated as the Hsp82 point mutant T525I and the human Hsp90β are specifically defective for the former and the latter, respectively. These findings further corroborate the view that molecular chaperones must also be considered as transient or stable components of signal transduction pathways.
Resumo:
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Δ mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of ∼100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of ∼480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.
Resumo:
Fission yeast rad22+, a homologue of budding yeast RAD52, encodes a double-strand break repair component, which is dispensable for proliferation. We, however, have recently obtained a cell division cycle mutant with a temperature-sensitive allele of rad22+, designated rad22-H6, which resulted from a point mutation in the conserved coding sequence leading to one amino acid alteration. We have subsequently isolated rad22+ and its novel homologue rti1+ as multicopy suppressors of this mutant. rti1+ suppresses all the defects of cells lacking rad22+. Mating type switch-inactive heterothallic cells lacking either rad22+ or rti1+ are viable, but those lacking both genes are inviable and arrest proliferation with a cell division cycle phenotype. At the nonpermissive temperature, a synchronous culture of rad22-H6 cells performs DNA synthesis without delay and arrests with chromosomes seemingly intact and replication completed and with a high level of tyrosine-phosphorylated Cdc2. However, rad22-H6 cells show a typical S phase arrest phenotype if combined with the rad1-1 checkpoint mutation. rad22+ genetically interacts with rad11+, which encodes the large subunit of replication protein A. Deletion of rad22+/rti1+ or the presence of rad22-H6 mutation decreases the restriction temperature of rad11-A1 cells by 4–6°C and leads to cell cycle arrest with chromosomes incompletely replicated. Thus, in fission yeast a double-strand break repair component is required for a certain step of chromosome replication unlinked to repair, partly via interacting with replication protein A.
Resumo:
Cdc2–Cyclin B, the protein kinase that catalyzes the onset of mitosis, is subject to multiple forms of regulation. In the fission yeast Schizosaccharomyces pombe and most other species, a key mode of Cdc2–Cyclin B regulation is the inhibitory phosphorylation of Cdc2 on tyrosine-15. This phosphorylation is catalyzed by the protein kinases Wee1 and Mik1 and removed by the phosphatase Cdc25. These proteins are also regulated, a notable example being the inhibition of Wee1 by the protein kinase Nim1/Cdr1. The temperature-sensitive mutation cdc25–22 is synthetic lethal with nim1/cdr1 mutations, suggesting that a synthetic lethal genetic screen could be used to identify novel mitotic regulators. Here we describe that such a screen has identified cdr2+, a gene that has an important role in the mitotic control. Cdr2 is a 775 amino acid protein kinase that is closely related to Nim1 and mitotic control proteins in budding yeast. Deletion of cdr2 causes a G2-M delay that is more severe than that caused by nim1/cdr1 mutations. Genetic studies are consistent with a model in which Cdr2 negatively regulates Wee1. This model is supported by experiments showing that Cdr2 associates with the N-terminal regulatory domain of Wee1 in cell lysates and phosphorylates Wee1 in vitro. Thus, Cdr2 is a novel mitotic control protein that appears to regulate Wee1.
Resumo:
B-type cyclins are rapidly degraded at the transition between metaphase and anaphase and their ubiquitin-mediated proteolysis is required for cells to exit mitosis. We used a novel enrichment to isolate new budding mutants that arrest the cell cycle in mitosis. Most of these mutants lie in the CDC16, CDC23, and CDC27 genes, which have already been shown to play a role in cyclin proteolysis and encode components of a 20S complex (called the cyclosome or anaphase promoting complex) that ubiquitinates mitotic cyclins. We show that mutations in CDC26 and a novel gene, DOC1, also prevent mitotic cyclin proteolysis. Mutants in either gene arrest as large budded cells with high levels of the major mitotic cyclin (Clb2) protein at 37°C and cannot degrade Clb2 in G1-arrested cells. Cdc26 associates in vivo with Doc1, Cdc16, Cdc23, and Cdc27. In addition, the majority of Doc1 cosediments at 20S with Cdc27 in a sucrose gradient, indicating that Cdc26 and Doc1 are components of the anaphase promoting complex.
Resumo:
We have performed a genetic and biochemical analysis of the SPO12 gene, which regulates meiotic nuclear divisions in budding yeast. When sporulated, spo12 mutants undergo a single meiotic nuclear division most closely resembling meiosis II. We observed that Spo12 protein is localized to the nucleus during both meiotic divisions and that Clb1-Cdc28, Clb3-Cdc28, Clb4-Cdc28, and Clb5-Cdc28 kinase activities during meiosis were not affected by a spo12 mutation. Using two-hybrid analysis, we identified several genes, three of which are meiotically induced, that may code for proteins that interact with Spo12p. We also observed that two genes, BNS1 (Bypasses Need for Spo12p), which has homology to SPO12, and SPO13, whose mutant phenotype is like that of spo12, can partially suppress the meiotic defect of spo12 mutants when overexpressed. We found that Spo12p is also localized to the nucleus in vegetative cells and that its level peaks during G2/M. We observed that a spo12 mutation is synthetically lethal in vegetative cells with a mutation in HCT1, a gene necessary for cells to exit mitosis, suggesting that Spo12p may have a role in exit from mitosis.
Resumo:
One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.
Resumo:
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
The Rho GTPase Rho3 Has a Direct Role in Exocytosis That Is Distinct from Its Role in Actin Polarity
Resumo:
Budding yeast grow asymmetrically by the polarized delivery of proteins and lipids to specific sites on the plasma membrane. This requires the coordinated polarization of the actin cytoskeleton and the secretory apparatus. We identified Rho3 on the basis of its genetic interactions with several late-acting secretory genes. Mutational analysis of the Rho3 effector domain reveals three distinct functions in cell polarity: regulation of actin polarity, transport of exocytic vesicles from the mother cell to the bud, and docking and fusion of vesicles with the plasma membrane. We provide evidence that the vesicle delivery function of Rho3 is mediated by the unconventional myosin Myo2 and that the docking and fusion function is mediated by the exocyst component Exo70. These data suggest that Rho3 acts as a key regulator of cell polarity and exocytosis, coordinating several distinct events for delivery of proteins to specific sites on the cell surface.