992 resultados para Brain Stem Neoplasms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) may result in a variety of cognitive, behavioural and physical impairments. Dizziness has been reported in up to 80% of cases within the first few days after injury. The literature was reviewed to attempt to delineate prevalence of dizziness as a symptom, impairments causing dizziness, the functional limitations it causes and its measurement. The literature provides widely differing estimates of prevalence and vestibular system dysfunction appears to be the best reported of impairments contributing to this symptom. The variety of results is discussed and other possible causes for dizziness were reviewed. Functional difficulties caused by dizziness were not reported for this population in the literature and review of cognitive impairments suggests that existing measurement tools for dizziness may be problematic in this population. Research on the functional impact of dizziness in the TBI population and measurement of these symptoms appears to be warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scale insect genus Calycicoccus Brain has a single described species, C. merwei Brain, which is endemic to southeastern South Africa. Females of C. merwei induce small, mostly conical galls on the foliage of their host tree, Apodytes dimidiata E. Meyer ex Arn. (Icacinaceae), which has a wider, mostly coastal distribution, than that currently known for the scale insect. Calycicoccus has been placed in the family Eriococcidae and may be related to the South American genus Aculeococcus Lepage. No other native eriococcid species have been described so far in South Africa, although the family is diverse in other Gondwanan regions. This paper summarizes the biology of C. merwei, redescribes the adult female, describes the adult male, the second-instar female and the first-instar nymphs for the first time, and reconsiders the phylogenetic relationships of the genus. The adult female is shown to have unusual abdominal segmentation, in that segment I is present both dorsally and ventrally, but a segment is absent ventrally on the middle abdomen. First-instar nymphs are sexually dimorphic; males have a larger and relatively narrower body, larger mouthparts, longer antennae and legs, and more thoracic dorsal setae compared with females. Molecular data from nuclear small-subunit ribosomal DNA (18S) and elongation factor 1 alpha (EF-1a) show C. merwei to have no close relatives among the Eriococcidae sampled to date. Instead, the Calycicoccus lineage is part of a polytomy near the base of the Eriococcidae. Molecular dating of the node suggests that the Calycicoccus lineage diverged from other eriococcids more than 100 Mya. These data support the placement of Calycicoccus as the only genus in the subfamily Calycicoccinae Brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infections caused by the yeast Candida albicans represent an increasing threat to debilitated and immunosuppressed patients, and neutropenia is an important risk factor. Monoclonal antibody depletion of neutrophils in mice was used to study the role of these cells in host resistance. Ablation of neutrophils increased susceptibility to both systemic and vaginal challenge. The fungal burden in the kidney increased threefold on day 1, and 100-fold on day 4, and infection was associated with extensive tissue destruction. However, a striking feature of the disseminated disease in neutrophil-depleted animals was the altered pattern of organ involvement. The brain, which is one of the primary target organs in normal mice, was little affected. There was a threefold increase in the number of organisms recovered from the brains of neutrophil-depleted mice on day 4 after infection, but detectable abscesses were rare. In contrast, the heart, which in normal mice shows only minor lesions, developed severe tissue damage following neutrophil depletion. Mice deficient in C5 demonstrated both qualitative and quantitative increases in the severity of infection after neutrophil depletion when compared with C5-sufficient strains. The results are interpreted as reflecting organ-specific differences in the mechanisms of host resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats. In six of them, the left side was supplied with collagen membrane only and the right side (RS) with collagen membrane and hDPSC. In two rats, the RS had collagen membrane only and nothing was added at the left side (controls). Cells were used after in vitro characterization as mesenchymal cells. Animals were euthanized at 7, 20, 30, 60, and 120 days postoperatively and cranial tissue samples were taken from the defects for histologic analysis. Analysis of the presence of human cells in the new bone was confirmed by molecular analysis. The hDPSC lineage was positive for the four mesenchymal cell markers tested and showed osteogenic, adipogenic, and myogenic in vitro differentiation. We observed bone formation 1 month after surgery in both sides, but a more mature bone was present in the RS. Human DNA was polymerase chain reaction-amplified only at the RS, indicating that this new bone had human cells. The us e of hDPSC in NIS rats did not cause any graft. rejection. Our findings suggest that hDPSC is an additional cell resource for correcting large cranial defects in rats and constitutes a promising model for reconstruction of human large cranial defects in craniofacial surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was carried out to evaluate the feasibility of autologous adipose derived stem cells (ADSC) transplantation into female rabbits` urethra walls as an alternative to intrinsic urethral regeneration. Inguinal fat pad of 12 New Zealand adult female rabbits were harvested and processed to obtain stromal vascular fraction (SVF). The SVF were platted to isolate ADSC. Before urethral injection, cells were labeled with DiI marker. The urethra wall was injected with 1 x 10(7) autologous cells or saline (sham). The urethra was harvested at 2, 4, and 8 weeks to identify DiI-labeled cells. At 2 and 4 weeks, the ADSCs create a nodule localized in the urethral sub-mucosa. At 8 weeks, the ADSCs spread and integrated with the urethra wall from the initial injection site. This is the first study to demonstrate a successful autologous ADSCs transplantation. It confirms that ADSCs can survive and integrate within the urethral wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells (SC) are potential therapeutic tools in the treatment of chronic renal diseases. Number and engraftment of SC in the injured sites are important for possible differentiation into renal cells and paracrine effect. The aim of this study was to analyze the effect of subcapsular injection of mesenchymal stem cells (MSC) in the 5/6 nephrectomy model (5/6 Nx). MSC obtained from Wistar rats were isolated by their capacity to adhere to plastic surfaces, characterized by flow cytometry, and analyzed by their differentiation potential into osteoblasts. MSC (2 X 105) were injected into the subcapsule of the remnant kidney of male Wistar rats, and were followed for 15 or 30 days. 5/6 Nx rats showed significant hypertension at 15 and 30 days, which was reduced by MSC at 30 days. Increased albuminuria and serum creatinine at 15 and 30 days in 5/6 Nx rats were also reduced by subcapsular injection of MSC. We also observed a significant reduction of glomerulosclerosis index 30 days after injection of MSC. 4-6 diamidino-2-phenylindole dihydrochloride (DAPI)-stained MSC showed a migration of these cells into renal parenchyma 5, 15, and 30 days after subcapsular injection. In conclusion, our data demonstrated that subcapsular injection of MSC in 5/6 Nx rats is associated with renoprotective effects. These results suggest that locally implanted MSC in the kidney allow a large number of cells to migrate into the injured sites and demonstrate that subcapsular injection represent an effective route for MSC delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incomplete revascularization is associated with worse long-term outcomes. Autologous bone marrow cells (BMC) have recently been tested in patients with severe coronary artery disease. We tested the hypothesis that intramyocardial injection of autologous BMC increases myocardial perfusion in patients undergoing incomplete coronary artery bypass grafting (CABG). Twenty-one patients (19 men), 59 +/- 7 years old, with limiting angina and multivessel coronary artery disease (CAD), not amenable to complete CABG were enrolled. BMC were obtained prior to surgery, and the lymphomonocytic fraction separated by density gradient centrifugation. During surgery, 5 mL containing 2.1 +/- 1.3 x 10(8) BMC (CD34+ = 0.8 +/- 0.3%) were injected in the ischemic non-revascularized myocardium. Myocardial perfusion was assessed by magnetic resonance imaging (MRI) at baseline and 1 month after surgery. The increase in myocardial perfusion was compared between patients with < 50% (group A, n = 11) with that of patients with > 50% (group B, n = 10) of target vessels (stenosis a parts per thousand yenaEuro parts per thousand 70%) successfully bypassed. Injected myocardial segments included the inferior (n = 12), anterior (n = 7), and lateral (n = 2) walls. The number of treated vessels (2.3 +/- 0.8) was significantly smaller than the number of target vessels (4.2 +/- 1.0; P < 0.0001). One month after surgery, cardiac MRI showed a similar reduction (%) in the ischemic score of patients in group A (72.5 +/- 3.2), compared to patients in group B (78.1 +/- 3.2; P = .80). Intramyocardial injection of autologous BMC may help increase myocardial perfusion in patients undergoing incomplete CABG, even in those with fewer target vessels successfully treated. This strategy may be an adjunctive therapy for patients suffering from a more advanced (diffuse) CAD not amenable for complete direct revascularization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the many diseases discussed in the context of stem cell therapy, those concerning the heart account for almost one-third of the publications in the field. However, the long-term clinical outcomes have been disappointing, in part because of preclinical studies failing to optimize the timing, number, type, and method of cell delivery and to account for shape changes that the heart undergoes during failure. In situations in which cardiomyocytes have been used in cell therapy, their alignment and integration with host tissue have not been realized. Here we review the present status of direct delivery of stem cells or their derivative cardiomyocytes to the heart and the particular challenges each cell type brings, and consider where we should go from here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To document outcome and to investigate patterns of physical and psychosocial recovery in the first year following severe traumatic brain injury (TBI) in an Australian patient sample. Design: A longitudinal prospective study of a cohort of patients, with data collection at 3, 6, 9, and 12 months post injury. Setting: A head injury rehabilitation unit in a large metropolitan public hospital. Patients: A sample of 55 patients selected from 120 consecutive admissions with severe TBI. Patients who were more than 3 months post injury on admission, who remained confused, or who had severe communication deficits or a previous neurologic disorder were excluded. Interventions: All subjects participated in a multidisciplinary inpatient rehabilitation program, followed by varied participation in outpatient rehabilitation and community-based sen ices. Main Outcome Measures: The Sickness impact Profile (SIP) provided physical, psychosocial, and total dysfunction scores at each follow-up. Outcome at 1 year was measured by the Disability Rating Scale. Results: Multivariate analysis of variance indicated that the linear trend of recovery over time was less for psychosocial dysfunction than for physical dysfunction (F(1,51) = 5.87, P < .02). One rear post injury, 22% of subjects had returned to their previous level of employability, and 42% were able to live independently. Conclusions: Recovery from TBI in this Australian sample followed a pattern similar to that observed in other countries, with psychosocial dysfunction being more persistent. Self-report measures such as the SIP in TBI research are limited by problems of diminished self-awareness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.