961 resultados para Bone Morphogenetic Protein Receptors, Type I
Resumo:
Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses
Resumo:
OBJECTIVE: Data about the consequences of laparoscopic adjustable gastric banding (LAGB) on phospho-calcic and bone metabolism remain scarce. SUBJECTS: We studied a group of 37 obese premenopausal women (age: 24-52 y; mean BMI = 43.7 kg/m2) who underwent LAGB. METHODS: Serum calcium, phosphate, alkaline phosphatase, parathormone (PTH), vitamin D3, serum C-telopeptides, IGFBP-3 and IGF-1 were measured at baseline, 6, 12, 18 and 24 months after surgery. Body composition, bone mineral content (BMC) and density (BMD) were measured using dual-X-ray absorptiometry (DXA) at baseline, 6, 12 and 24 months after surgery. RESULTS: There was no clinically significant decrease of calcemia; PTH remained stable. Serum telopeptides increased by 100% (P < 0.001) and serum IGFBP-3 decreased by 16% (P < 0.001) during the first 6 months, and then stabilized, whereas IGF-1 remained stable over the 2 y. BMC and BMD decreased, especially at the femoral neck; this decrease was significantly correlated with the decrease of waist and hip circumference. CONCLUSIONS: We concluded that there was no evidence of secondary hyperparathyroidism 24 months after LAGB. The observed bone resorption could be linked to the decrease of IGFBP-3, although this decrease could be attributable to other confounding factors. Serum telopeptides seem to be a reliable marker of bone metabolism after gastric banding. DXA must be interpreted cautiously during major weight loss, because of the artefacts caused by the important variation of fat tissue after LAGB.
Resumo:
OBJECTIVE: To evaluate the effect of strenuous exercise on bone metabolism and related hormones in elderly subjects. METHODS: Twenty one active elderly subjects (11 men and 10 women; mean age 73.3 years) showing a mean theoretical Vo2max of 151.4% participated. Concentrations of plasma ionised calcium (iCa), serum intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25(OH)D), and 1.25-dihydroxy-vitamin D3 (1.25(OH)2D3), as well as the bone biochemical markers type I collagen C-telopeptide for bone resorption and osteocalcin and bone alkaline phosphatase for bone formation, were analysed before and after a maximal incremental exercise test. RESULTS: At basal level, iPTH was positively correlated with age (r = 0.56, p < 0.01) and negatively correlated with 25(OH)D (r = -0.50; p < 0.01) and 1.25(OH)2D3 (r = -0.47; p < 0.05). Moreover, 25(OH)D and 1.25(OH)2D3 levels were negatively correlated with age (r = -0.50, p < 0.01 and r = -0.53, p < 0.01, respectively). After exercise, iCa and 25(OH)D decreased (p < 0.001 and p = 0.01, respectively) while iPTH increased (p < 0.001). The levels of 1.25(OH)2D3, bone biochemical markers, haematocrit, and haemoglobin were unchanged. The variations in iCa and 25(OH)D were not related to age and/or sex. The iPTH variation was directly related to basal iPTH levels (p < 0.01) and indirectly related to age. CONCLUSIONS: In active elderly subjects, strenuous exercise disturbed calcium homeostasis and bone related hormones without immediate measurable effect on bone turnover. Although an increase in iPTH could have an anabolic action on bone tissue, our findings from our short term study did not allow us to conclude that such action occurred.
Resumo:
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Resumo:
Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue characterized by bone fragility and alteration in synthesis and posttranslational modification of type I collagen. Autosomal dominant OI is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Bruck syndrome is a recessive disorder featuring congenital contractures in addition to bone fragility; Bruck syndrome type 2 is caused by mutations in PLOD2 encoding collagen lysyl hydroxylase, whereas Bruck syndrome type 1 has been mapped to chromosome 17, with evidence suggesting region 17p12, but the gene has remained elusive so far. Recently, the molecular spectrum of OI has been expanded with the description of the basis of a unique posttranslational modification of type I procollagen, that is, 3-prolyl-hydroxylation. Three proteins, cartilage-associated protein (CRTAP), prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene), and the prolyl cis-trans isomerase cyclophilin-B (PPIB), form a complex that is required for fibrillar collagen 3-prolyl-hydroxylation, and mutations in each gene have been shown to cause recessive forms of OI. Since then, an additional putative collagen chaperone complex, composed of FKBP10 (also known as FKBP65) and SERPINH1 (also known as HSP47), also has been shown to be mutated in recessive OI. Here we describe five families with OI-like bone fragility in association with congenital contractures who all had FKBP10 mutations. Therefore, we conclude that FKBP10 mutations are a cause of recessive osteogenesis imperfecta and Bruck syndrome, possibly Bruck syndrome Type 1 since the location on chromosome 17 has not been definitely localized.
Resumo:
Intracellular signals elicited by LDLs are likely to play a role in the pathogenesis associated with increased LDL blood levels. We have previously determined that LDL stimulation of human skin fibroblasts, used as a model system for adventitial fibroblasts, activates p38 mitogen-activated protein kinases (MAPKs), followed by IL-8 production and increased wound-healing capacity of the cells. The proximal events triggering these responses had not been characterized, however. Here we show that MAPK kinases MKK3 and MKK6, but not MKK4, are the upstream kinases responsible for the activation of the p38 MAPKs and stimulation of wound closure in response to LDLs. Phosphoinositide 3 kinases (PI3Ks) and Ras have been suggested to participate in lipoprotein-induced MAPK activation. However, specific PI3K inhibitors or expression of a dominant-negative form of Ras failed to blunt LDL-induced p38 MAPK activation. The classical LDL receptor does not participate in LDL signaling, but the contribution of other candidate lipoprotein receptors has not been investigated. Using cells derived from scavenger receptor class B type I (SR-BI) knockout mice or the BLT-1 SR-BI inhibitor, we now show that this receptor is required for LDLs to stimulate p38 MAPKs and to promote wound healing. Identification of MKK3/6 and SR-BI as cellular relays in LDL-mediated p38 activation further defines the signaling events that could participate in LDL-mediated pathophysiological responses.
Resumo:
The orphan receptor CRF2-4 is a member of the class II cytokine receptor family (CRF2), which includes the interferon receptors, the interleukin (IL) 10 receptor, and tissue factor. CRFB4, the gene encoding CRF2-4, is located within a gene cluster on human chromosome 21 that comprises three interferon receptor subunits. To elucidate the role of CRF2-4, we disrupted the CRFB4 gene in mice by means of homologous recombination. Mice lacking CRF2-4 show no overt abnormalities, grow normally, and are fertile. CRF2-4 deficient cells are normally responsive to type I and type II interferons, but lack responsiveness to IL-10. By approximately 12 wk of age, the majority of mutant mice raised in a conventional facility developed a chronic colitis and splenomegaly. Thus, CRFB4 mutant mice recapitulate the phenotype of IL-10-deficient mice. These findings suggest that CRF2-4 is essential for IL-10-mediated effects and is a subunit of the IL-10 receptor.
Resumo:
Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.
Resumo:
Introduction: To determine the metabolic effect of teriparatide (TPTD) on bone, 99mTc-MDP skeletal plasma clearance was measured in postmenopausal women with osteoporosis treated with TPTD 20 μg/day. Methods: Ten postmenopausal women with osteoporosis had radionuclide bone scans at baseline, 3, and 18 months after starting TPTD 20 μg/day and after 6 months off therapy. Participants were injected with 600 MBq 99mTc- MDP and whole body bone scans acquired at 10 min, 1, 2, 3, and 4 h. Multiple blood samples were taken between 5 min and 4 h and free 99mTc-MDP measured using ultrafiltration. 99mTc-MDP plasma clearance (Kbone) was evaluated using the Patlak plot method. Regional differences in Kbone were studied by measuring the whole skeleton and subregions. Serum procollagen type I Nterminal propeptide (PINP), bone-specific alkaline phosphatase (BSAP), and urinary N-terminal telopeptide (NTX) were measured at each visit.Discussion: The median increase from baseline in whole skeleton Kbone was 22% (P=0.004) at 3 months and 34% (P= 0.002) at 18 months, decreasing to 0.7% after 6 months off therapy. In subregions, Kbone value increases were statistically significant at 3 months and in all subregions except the pelvis at 18 months. After 6 months off therapy, subregional Kbone values also returned toward baseline. Bone markers increases from baseline were statistically significant at 3 and 18 months (BSAP, 15% and 36%; PINP, 137% and 192%; NTX, 109% and 125%). After 6 months off therapy, PINP and NTX values had declined, though remained above baseline (BSAP, −3%; PINP, 43%; NTX, 56%). Increased Kbone values in the whole body and lower extremities were correlated with increases in most bone markers at 3 and 18 months. Increased skeletal uptake of 99mTc-MDP during treatment with TPTD is indicative of increased bone formation and is supported by increases in bone turnover markers.Conclusion: Changes in Kbone and skeletal uptake measured by radionuclide bone scans in patients taking TPTD are the result of metabolic activity of the drug. These data may provide physicians with useful insights when interpreting bone scan results in this population.
Resumo:
A class of secreted poxvirus tumor necrosis factor (TNF)-binding proteins has been isolated from Tanapox-infected cell supernatants. The inhibitor bound to a TNF-affinity column and was identified as the product of the 2L gene. Sequence analysis of 2L family members from other yatapoxviruses and swinepox virus yielded no sequence homology to any known cellular gene. The expressed Tanapox virus 2L protein bound to human TNF with high affinity (K(d) = 43 pM) and exhibits an unusually slow off-rate. However, 2L is unable to bind to a wide range of human TNF family members. The 2L protein can inhibit human TNF from binding to TNF receptors I and II as well as block TNF-induced cytolysis. Thus, Tanapox virus 2L represents an inhibitor of human TNF and offers a unique strategy with which to modulate TNF activity.
Resumo:
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.
Resumo:
Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a)) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a)). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a) embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.
Resumo:
There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.