989 resultados para Biology education
Resumo:
This paper discusses the changes brought by the communication revolution in teaching and learning in the scope of LSP. Its aim is to provide an insight on how teaching which was bi-dimensional, turned into a multidimensional system, gathering other complementary resources that have transformed, in a incredibly short time, the ways we receive share and store information, for instance as professionals, and keep in touch with our peers. The increasing rise of electronic publications, the incredible boom of social and professional networks, search engines, blogs, list servs, forums, e-mail blasts, Facebook pages, YouTube contents, Tweets and Apps, have twisted the way information is conveyed. Classes ceased to be predictable and have been empowered by digital platforms, innumerous and different data repositories (TILDE, IATE, LINGUEE, and so many other terminological data banks) that have definitely transformed the academic world in general and tertiary education in particular. There is a bulk of information to be digested by students, who are no longer passive but instead responsible and active for their academic outcomes. The question is whether they possess the tools to select only what is accurate and important for a certain subject or assignment, due to that overflow? Due to the reduction of the number of course years in most degrees, after the implementation of Bologna and the shrinking of the curricula contents, have students the possibility of developing critical thinking? Both teaching and learning rely on digital resources to improve the speed of the spreading of knowledge. But have those changes been effective to promote really communication? Furthermore, with the increasing Apps that have already been developed and will continue to appear for learning foreign languages, for translation among others, will the students feel the need of learning them once they have those Apps. These are some the questions we would like to discuss in our paper.
Resumo:
Proceedings of EDEN 10th Anniversary Conference, 10-13 June 2001 Stockholm, Sweden
Resumo:
The purpose of this paper is to present a framework that increases knowledge sharing and collaboration in Higher Education Institutions. The paper discusses the concept of knowledge management in higher education institutions, presenting a systematization of knowledge practices and tools to linking people (students, teachers, researchers, secretariat staff, external entities)and promoting the knowledge sharing across several key processes and services in a higher education institution, such as: the research processes, learning processes, student and alumni services, administrative services and processes, and strategic planning and management. The framework purposed in this paper aims to improve knowledge practices and processes which facilitate an environment and a culture of knowledge collaboration,sharing and discovery that should characterize an institution of higher education.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
The change of paradigm imposed by the Bologna process, in which the student will be responsible for their own learning, and the presence of a new generation of students with higher technological skills, represent a huge challenge for higher education institutions. The use of new Web Social concepts in teaching process, supported by applications commonly called Web 2.0, with which these new students feel at ease, can bring benefits in terms of motivation and the frequency and quality of students' involvement in academic activities. An e-learning platform with web-based applications as a complement can significantly contribute to the development of different skills in higher education students, covering areas which are usually in deficit.
Resumo:
The Online Mathematics Education Project (MatActiva) is an exciting new initiative which aims to support and enhance mathematics education. The project is led by the Institute of Accounting and Administration of Porto (ISCAP), part of the Polytechnic Institute of Porto (IPP). It provides innovative resources and carefully constructed materials around themes such as Elementary Mathematics, Calculus, Algebra, Statistics and Financial Mathematics to help support and inspire students and teachers of mathematics. The goal is to increase mathematical understanding, confidence and enjoyment, enrich the mathematical experience of each person, and promote creative and imaginative approaches to mathematics. Furthermore the project can be used to deliver engaging and effective mathematics instruction through the flipped classroom model. This paper also presents the findings of a large survey, whose propose was to study the student’s reaction to the project.
Resumo:
Journal of Cleaner Production, nº 16, p. 639-645
Resumo:
Systematics is the study of diversity of the organisms and their relationships comprising classification, nomenclature and identification. The term classification or taxonomy means the arrangement of the organisms in groups (rate) and the nomenclature is the attribution of correct international scientific names to organisms and identification is the inclusion of unknown strains in groups derived from classification. Therefore, classification for a stable nomenclature and a perfect identification are required previously. The beginning of the new bacterial systematics era can be remembered by the introduction and application of new taxonomic concepts and techniques, from the 50s and 60s. Important progress were achieved using numerical taxonomy and molecular taxonomy. Molecular taxonomy, brought into effect after the emergence of the Molecular Biology resources, provided knowledge that comprises systematics of bacteria, in which occurs great evolutionary interest, or where is observed the necessity of eliminating any environmental interference. When you study the composition and disposition of nucleotides in certain portions of the genetic material, you study searching their genome, much less susceptible to environmental alterations than proteins, codified based on it. In the molecular taxonomy, you can research both DNA and RNA, and the main techniques that have been used in the systematics comprise the build of restriction maps, DNA-DNA hybridization, DNA-RNA hybridization, sequencing of DNA sequencing of sub-units 16S and 23S of rRNA, RAPD, RFLP, PFGE etc. Techniques such as base sequencing, though they are extremely sensible and greatly precise, are relatively onerous and impracticable to the great majority of the bacterial taxonomy laboratories. Several specialized techniques have been applied to taxonomic studies of microorganisms. In the last years, these have included preliminary electrophoretic analysis of soluble proteins and isoenzymes, and subsequently determination of deoxyribonucleic acid base composition and assessment of base sequence homology by means of DNA-RNA hybrid experiments beside others. These various techniques, as expected, have generally indicated a lack of taxonomic information in microbial systematics. There are numberless techniques and methodologies that make bacteria identification and classification study possible, part of them described here, allowing establish different degrees of subspecific and interspecific similarity through phenetic-genetic polymorphism analysis. However, was pointed out the necessity of using more than one technique for better establish similarity degrees within microorganisms. Obtaining data resulting from application of a sole technique isolatedly may not provide significant information from Bacterial Systematics viewpoint
Resumo:
This chapter appears in Encyclopaedia of Distance Learning 2nd Edition edit by Rogers, P.; Berg, Gary; Boettecher, Judith V.; Howard, Caroline; Justice, Lorraine; Schenk, Karen D.. Copyright 2009, IGI Global, www.igi-global.com. Posted by permission of the publisher. URL: http://www.igi-global.com/reference/ details.asp?ID=9703&v=tableOfContents