959 resultados para Biogas Combustion
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
RATIONALE: AICAR (5-aminoimidazole-4-carboxamide 1β-D-ribofuranoside) is prohibited in sport according to rules established by the World Anti-Doping Agency. Doping control laboratories identify samples where AICAR abuse is suspected by measuring its urinary concentration and comparing the observed level with naturally occurring concentrations. As the inter-individual variance of urinary AICAR concentrations is large, this approach requires a complementary method to unambiguously prove the exogenous origin of AICAR. Therefore, a method for the determination of carbon isotope ratios (CIRs) of urinary AICAR has been developed and validated. METHODS: Concentrated urine samples were fractionated by means of liquid chromatography for analyte cleanup. Derivatization of AICAR yielding the trimethylsilylated analog was necessary to enable CIR determinations by gas chromatography/combustion/isotope ratio mass spectrometry. The method was tested for its repeatability and stability over time and a linear mixing model was applied to test for possible isotopic discrimination. A reference population of n = 63 males and females was investigated to calculate appropriate reference limits to differentiate endogenous from exogenous urinary AICAR. These limits were tested by an AICAR elimination study. RESULTS: The developed method fulfills all the requirements for adequate sports drug testing and was found to be fit for purpose. The investigated reference population showed a larger variability in the CIR of AICAR than of the endogenous steroids. Nevertheless, the calculated thresholds for differences between AICAR and endogenous steroids can be applied straightforwardly to evaluate suspicious doping control samples with the same statistical confidence as established e.g. for testosterone misuse. These thresholds enabled the detection of a single oral AICAR administration for more than 40 h. CONCLUSIONS: Determination of thee CIRs is the method of choice to distinguish between an endogenous and an exogenous source of urinary AICAR. The developed method will enable investigations into doping control samples with elevated urinary concentrations of AICAR and clearly differentiate between naturally produced/elevated and illicitly administered AICAR.
Resumo:
Introduction: Exposure to environmental tobacco smoke (ETS) is a major environmental risk factor. Indoor contaminants come from a variety of sources, which can include inadequate ventilation, volatile organic compounds (VOCs), biological agents, combustion products, and ETS. Because ETS is one of the most frequent causes of IAQ complaints as well as the high mortality of passive smoking, in June 2004 the University of Geneva made the decision to ban smoking inside the so called "Uni-Mail" building, the biggest Swiss University human science building of recent construction, and the ordinance was applied beginning in October 2004. This report presents the finding related to the IAQ of the "Uni-Mail" building before and after smoking bans using nicotine, suspended dust, condensate and PAHs level in air as tracers to perform an assessment of passive tobacco exposure for non-smokers inside the building. Methods: Respirable particles (RSP) A real time aerosol monitor (model DataRAM)was place at sampling post 1, level ground floor. Condensate It consists in extracting any organic matter taken on the glass fibre filters by MeOH, and then measuring the total absorbent of the MeOH extract to the UV wavelength of 447 nm. Nicotine Nicotine was taken by means of cartridges containing of XAD-4 to the fixed flow of 0.5 L/min. The analytical method used for the determination of nicotine is based on gas chromatography with Nitrogen selective detector GC-NPD. Results: Figure 1 shows the box plot density display of 3 parameters before and after smoking bans for all 7 sampling posts: dust, condensate and nicotine in air in μg/m3. Conclusion: Before the smoking ban, the level of the concentrations of respirable particles (RSP) is raised more, average of the day 320 μg/m3, with peaks of more than 1000 μg/m3, compared with the values of the surrounding air between 22 and 30 μg/m3. The nicotine level is definitely more important (average 5.53 μg/m3, field 1.5 to 17.9 μg/m3). Once the smoking bans inside the building were applied, one notes a clear improvement in terms of concentrations of pollutants. For dust, the concentration fell by 3 times (average: 130 μg/m3, range: 40 to 160 μg/m3) and that of nicotine by 10 times (average: 0.53 μg/m3, range: 0 to 1.69 μg/m3) compared to that found before smoking bans. The outdoor air RSP concentration was 22 μg/m3 or 10 times lower. Nicotine seems to be the best tracer for ETS free of interference, independent of location or season.
Resumo:
A la física o a l’enginyeria es defineix com fregament o fricció a la resistència que s'oposa a la rotació o al lliscament d'un cos sobre un altre, o també a la força que apareix en la superfície de contacte de dos cossos quan s'intenta lliscar un sobre un altre. El fregament ha estat fins avui dia un gran problema físic, això és degut a que genera imperfeccions, especialment microscòpiques, entre les superfícies en contacte. Aleshores és quan apareix la tribologia. La tribologia és la ciència que estudia la fricció, el desgast i la lubricació de superfícies en contacte. El lliscament entre superfícies sòlides es caracteritza generalment per un alt coeficient de fricció i un gran desgast a causa de les propietats específiques de lessuperfícies. La lubricació consisteix en la introducció d'una capa intermèdia d'un material aliè entre les superfícies en moviment. En aquest projecte hem intentat aplicar tècniques i mètodes de control els quals puguin arribar a millorar i perfeccionar els sistemes de mesura i control a nivell industrial i/o particular. En el nostre cas ha estat l’estudi dels olis lubricants usats en motors de combustió interna de variats vehicles com motocicletes, automòbils, camions o vaixells. Hem introduït una millora d’automatització mitjançant un circuit pneumàtic al captador de partícules, hi hem introduït una tècnica per captar partícules a partir de filtres de membrana, hem estudiat les mostres i llurs ferrogrames i membranes amb la finalitat de detectar les anomalies dels motors. L’objectiu del treball és l’estudi del desgast originat en motors de combustió interna, majoritàriament, Dièsel de camions, automòbils i vaixells. Això, comprèn la captació de partícules en ferrografies, la seva observació i anàlisi en microscopi, la seva classificació, comparació i la detecció d’anomalies en els motors. Per altra banda, també s’aprofundirà en les tècniques d’anàlisi, la lubricació i manteniment dels motors i el nou disseny i validació d’un captador de partícules automatitzat
Resumo:
L’objectiu d’aquest projecte fi de carrera és en primer lloc, determinar les modificacions a realitzar en el laboratori de lubricants i combustibles de l’EPS per a la utilització de l’espectrofotòmetre d’absorció atòmica de flama; en segon lloc, posar a punt l’aparell establint els paràmetres i les condicions d’assaig idònies per a portar a terme les anàlisis de metalls de desgast presents en olis lubricants usats de motors de combustió interna. I finalment, establir un protocol de treball al laboratori i estudiar la viabilitat d’oferir el servei d’anàlisi de lubricants a empreses i particulars
Resumo:
Fine particulate matter from traffic increases mortality and morbidity. An important source of traffic particles is brake wear. American studies reported cars to emit break wear particles at a rate of about 11mg/km to 20mg/km of driven distance. A German study estimated that break wear contributes about 12.5% to 21% of the total traffic particle emissions. The goal of this study was to build a system that allows the study of brake wear particle emissions during different braking behaviours of different car and brake types. The particles should be characterize in terms of size, number, metal, and elemental and organic carbon composition. In addition, the influence of different deceleration schemes on the particle composition and size distribution should be studied. Finally, this system should allow exposing human cell cultures to these particles. An exposure-box (0.25 cubic-m volume) was built that can be mounted around a car's braking system. This allows exposing cells to fresh brake wear particles. Concentrations of particle numbers, mass and surface, metals, and carbon compounds were quantified. Tests were conducted with A549 lung epithelial cells. Five different cars and two typical braking behaviours (full stop and normal deceleration) were tested. Particle number and size distribution was analysed for the first six minutes. In this time, two braking events occurred. Full stop produced significantly higher particle concentrations than normal deceleration (average of 23'000 vs. 10'400 #/cm3, p= 0.016). The particle number distribution was bi-modal with one peak at 60 to 100 nm (depending on the tested car and braking behaviour) and a second peak at 200 to 400 nm. Metal concentrations varied depending on the tested car type. Iron (range of 163 to 15'600 μg/m3) and Manganese (range of 0.9 to 135 μg/m3) were present in all samples, while Copper was absent in some samples (<6 to 1220 μg/m3). The overall "fleet" metal ratio was Fe:Cu:Mn = 128:14:1. Temperature and humidity varied little. A549-cells were successfully exposed in the various experimental settings and retained their viability. Culture supernatant was stored and cell culture samples were fixated to test for inflammatory response. Analysis of these samples is ongoing. The established system allowed testing brake wear particle emissions from real-world cars. The large variability of chemical composition and emitted amounts of brake wear particles between car models seems to be related to differences between brake pad compositions of different producers. Initial results suggest that the conditions inside the exposure box allow exposing human lung epithelial cells to freshly produced brake wear particles.
Resumo:
To provide further insights into ruminant lipid digestion and metabolism, and into cis9, trans-11 18:2 synthesis, 12 growing Engadine lambs grazing either mountain pasture (2,250 m above sea level; n = 6) or lowland pasture (400 m above sea level; n = 6) were studied. Both pastures consisted exclusively of C-3 plants. Before the experiment, all animals grazed a common pasture for 6 wk. Grasses and perirenal adipose tissues of the sheep were analyzed for fatty acids by gas chromatography. Stable C-isotope ratios (delta C-13 values in % vs. the Vienna Pee Dee Belemnite standard) were determined in the composite samples by elemental analysis-isotope ratio mass spectrometry. The delta C-13 of the individual fatty acids were measured by gas chromatography-combustion-isotope ratio mass spectrometry. The delta C-13 value of the entire mountain pasture grass was -27.5% (SD 0.31), whereas that of the lowland pasture grass was -30.0% (SD 0.07). This difference was reflected in the perirenal adipose tissues of the corresponding sheep (P < 0.05), even though the delta C-13 values were less in the animals than in the grass. The delta C-13 values for cis-9 16:1 and cis-9 18:1 in perirenal fat differed between mountain and lowland lambs (P < 0.05). The 16:0 in the adipose tissue was enriched in C-13 by 5% compared with the dietary 16:0, likely as a result of partly endogenous synthesis. The d13C values of cis-9, trans-11 18:2 (cis-9, trans-11 CLA) in the adipose tissue were smaller than those of its dietary precursors, cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3; conversely, the delta C-13 values of trans-11 18:1 were not, suggesting that large proportions of perirenal cis-9, trans-11 18:2 were of endogenous origin and discrimination against C-13 occurred during Delta(9)-desaturation. The same discrimination was indicated by the isotopic shift between 16:0 and cis-9 16:1 in the mountain grazing group. Furthermore, the delta C-13 values of cis-9, trans-11 18:2 were smaller relative to the precursor fatty acids in the mountain lambs compared with the lowland group. This result suggests a reduced extent of biohydrogenation in lambs grazing on mountain grass in comparison with those grazing on lowland grass. This was supported by the smaller cis-9, trans-11 18:2 concentrations in total fatty acids found in the adipose tissues of the lowland lambs (P < 0.001). The results of this study demonstrate that natural differences between delta C-13 values of swards from different pastures and the adipose tissue fatty acids could be used as tracers in studies of lipid metabolism in ruminants.
Resumo:
There is a considerable discrepancy between the number of identified occupational-related bladder cancer cases and the estimated numbers particularly in emerging nations or less developed countries where suitable approaches are less or even not known. Thus, within a project of the World Health Organisation Collaborating Centres in Occupational Health, a questionnaire of the Dortmund group, applied in different studies, was translated into more than 30 languages (Afrikaans, Arabic, Bengali, Chinese, Czech, Dutch, English, Finnish, French, Georgian, German, Greek, Hindi, Hungarian, Indonesian, Italian, Japanese, Kannada, Kazakh, Kirghiz, Korean, Latvian, Malay, Persian (Farsi), Polish, Portuguese, Portuguese/Brazilian, Romanian, Russian, Serbo-Croatian, Slovak, Spanish, Spanish/Mexican, Tamil, Telugu, Thai, Turkish, Urdu, Vietnamese). The bipartite questionnaire asks for relevant medical information in the physician's part and for the occupational history since leaving school in the patient's part. Furthermore, this questionnaire is asking for intensity and frequency of certain occupational and non-occupational risk factors. The literature regarding occupations like painter, hairdresser or miner and exposures like carcinogenic aromatic amines, azo dyes, or combustion products is highlighted. The questionnaire is available on www.ifado.de/BladderCancerDoc.
Resumo:
Carbon isotope ratio of androgens in urine specimens is routinely determined to exclude an abuse of testosterone or testosterone prohormones by athletes. Increasing application of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) in the last years for target and systematic investigations on samples has resulted in the demand for rapid sample throughput as well as high selectivity in the extraction process particularly in the case of conspicuous samples. For that purpose, we present herein the complimentary use of an SPE-based assay and an HPLC fractionation method as a two-stage strategy for the isolation of testosterone metabolites and endogenous reference compounds prior to GC/C/IRMS analyses. Assays validation demonstrated acceptable performance in terms of intermediate precision (range: 0.1-0.4 per thousand) and Bland-Altman analyses revealed no significant bias (0.2 per thousand). For further validation of this two-stage analyses strategy, all the specimens (n=124) collected during a major sport event were processed.
Resumo:
L'objecte del projecte consisteix en investigar les capacitats del programari dedinàmica de fluids computacional FLUENT per simular processos transitoris de combustióquan es cremen sòlids. Com el programari FLUENT no incorpora cap mòdul de combustióde sòlids prims, s'hauran de realitzar les funcions d'usuari adients per tal d'incorporar lesequacions i les condicions de contorns que són rellevants en aquests tipus de problemes. Elmodel resultant es validarà amb dades experimentals per a la combustió de fulls decel•lulosa en flames bidimensionals. També es durà a terme una anàlisi de sensibilitat de lasolució variant els paràmetres del model. En funció dels resultats de la validació es durà aterme una extensió del model per a situacions tridimensionals
Resumo:
Exposure to fine particles and noise has been linked to cardiovascular diseases and elevated cardiovascular mortality affecting the worldwide population. Residence and/or work in proximity to emission sources as for example road traffic leads to an elevated exposure and a higher risk for adverse health effects. Highway maintenance workers spend most of their work time in traffic and are exposed regularly to particles and noise. The aims of this thesis were to provide a better understanding of the workers' mixed exposure to particles and noise and to assess cardiopulmonary short term health effects in relation to this exposure. Exposure and health data were collected in collaboration with 8 maintenance centers of the Swiss Road Maintenance Services located in the cantons Bern, Fribourg and Vaud in western Switzerland. Repeated measurements with 18 subjects were conducted during 50 non-consecutive work shifts between Mai 2010 and February 2012, equally distributed over all seasons. In the first part of this thesis we tested and validated measurements of ultrafine particles with a miniature diffusion size classifier (miniDiSC) - a novel particle counting device that was used for the exposure assessment during highway maintenance work. We found that particle numbers and average particle size measured by the miniDiSC were highly correlated with data from the P-TRAK, a condensation particle counter (CPC), as well as from a scanning mobility particle sizer (SMPS). However, the miniDiSC measured significantly more particles than the P-TRAK and significantly less than the SMPS in its full size range. Our data suggests that the instrument specific cutoffs were the main reason for the different particle counts. The first main objective of this thesis was to investigate the exposure of highway maintenance workers to air pollutants and noise, in relation to the different maintenance activities. We have seen that the workers are regularly exposed to high particle and noise levels. This was a consequence of close proximity to highway traffic and the use of motorized working equipment such as brush cutters, chain saws, generators and pneumatic hammers during which the highest exposure levels occurred. Although exposure to air pollutants were not critical if compared to occupational exposure limits, the elevated exposure to particles and noise may lead to a higher risk for cardiovascular diseases in this worker population. The second main objective was to investigate cardiopulmonary short-term health effects in relation to the particle and noise exposure during highway maintenance work. We observed a PM2.5 related increase of the acute-phase inflammation markers C-reactive protein and serum amyloid A and a decrease of TNFa. Heart rate variability increased as a consequence of particle as well as noise exposure. Increased high frequency power indicated a stronger parasympathetic influence on the heart. Elevated noise levels during recreational time, after work, were related to increased blood pressure. Our data confirmed that highway maintenance workers are exposed to elevated levels of particles and noise as compared to the average population. This exposure poses a cardiovascular health risk and it is therefore important to make efforts to better protect the workers health. The use of cleaner machines during maintenance work would be a major step to improve the workers' situation. Furthermore, regulatory policies with the aim of reducing combustion and non-combustion emissions from road traffic are important for the protection of workers in traffic environments and the entire population.
Resumo:
Aquest projecte s’ha portat a terme per tal de millorar en diferentsaspectes el motor Honda Gx35 , del vehicle de baix consum de la Universitat deGirona (Udg). Aquest és un motor de combustió interna de gasolina (cicle Otto).L’objectiu és el disseny d’una culata per poder minimitzar el consum de gasolina, la qual s’ha de poder acoblar amb el motor Honda Gx35. Aquest motor,prèviament s’haurà de modificar per poder-hi instal•lari la nova culata
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ 15N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ 15N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH4NO3) and potassium nitrate (KNO3) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH4)2SO4]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V2O5) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ 15N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the thermochemistry of the substances and the analytical technique itself. The results emphasise the difference in chemical nature of inorganic and organic samples, which necessarily involves distinct thermochemistry when analysed by EA-IRMS. Therefore, they should not be processed using the same analytical procedure. This clearly impacts on the way international secondary reference materials should be used for the calibration of organic laboratory standards.