935 resultados para Biochemical and molecularcharacterization


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biochemical and molecular basis of chlorophyll (Chl) catabolism in bananas was investigated during ripening at 20°C and at an elevated temperature (35°C) where degreening is inhibited. Biochemical analysis showed that Chl breakdown products could be isolated from fruit ripened at both temperatures. The coloured breakdown products, chlorophyllide and pheophorbide, were not detected at any stage of ripening in the two treatments; however, a non-fluorescent Chl catabolite accumulated to a higher concentration at 20 than at 35°C. To investigate the ripening-related gene expression associated with these changes, a cDNA library was generated from the peel of fruit ripened at 20°C. Differential screening of this library produced 20 non-redundant families of clones including those encoding enzymes involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation and other metabolic events. The expression of these genes was followed by northern analysis in fruit ripened at 20 and 35°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cholesterol is a major component of atherosclerotic plaques. Cholesterol accumulation within the arterial intima and atherosclerotic plaques is determined by the difference of cellular cholesterol synthesis and/or influx from apo B-containing lipoproteins and cholesterol efflux. In humans, apo A-I Milano infusion has led to rapid regression of atherosclerosis in coronary arteries. We hypothesised that a multifunctional plasma delipidation process (PDP) would lead to rapid regression of experimental atherosclerosis and probably impact on adipose tissue lipids. In hyperlipidemic animals, the plasma concentrations of cholesterol, triglyceride and phospholipid were, respectively, 6-, 157-, and 18-fold higher than control animals, which consequently resulted in atherosclerosis. PDP consisted of delipidation of plasma with a mixture of butanol-diisopropyl ether (DIPE). PDP removed considerably more lipid from the hyperlipidemic animals than in normolipidemic animals. PDP treatment of hyperlipidemic animals markedly reduced intensity of lipid staining materials in the arterial wall and led to dramatic reduction of lipid in the adipose tissue. Five PDP treatments increased apolipoprotein A1 concentrations in all animals. Biochemical and hematological parameters were unaffected during PDP treatment. These results show that five PDP treatments led to marked reduction in avian atherosclerosis and removal of lipid from adipose tissue. PDP is a highly effective method for rapid regression of atherosclerosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The P2 visual evoked response in man has a cholinergic component while the P100 response has not. The P100 latency is significantly decreased after an oral dose of phenylalanine in man while the P2 signal is unaffected. Analyses of the P100 decrease shows no correlation with tyrosine levels but a significant positive correlation with plasma ane urine levels. A small group shows a P100 delay which correlated with increased neopterin levels only. Increased plasma total biopterins in man following a phenylalanine dose are due to rapidly increased tetrahydrobiopterin synthesis in the liver.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temozolomide is an imidazotetrazinone with antineoplastic properties. It is structurally related to dacarbazine. Temozolomide was not metabolized in vitro by liver fractions. Chemical decomposition appears to play an important r^ole in its in vitro and in vivo disposition. In contrast, 3-methylbenzotriazinone, a structural analogue, was metabolized by hepatic microsomes to afford benzotriazinone and a hydrophilic metabolite. The cytotoxicity of temozolomide, dacarbazine, 5-[3-(hydroxy-methyl-3-methyl-triazen-1-yl]imidazole-5-carboxamide (HMMTIC) and 3-monomethyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) were investigated in TLX5 murine lymphoma cells. Unlike dacarbazine, which was not toxic, MTIC, HMMTIC and temozolomide were cytotoxic in the absence of microsomes. Decarbazine was only cytotoxic in the presence of microsomes. The formation of MTIC from dacarbazine, HMMTIC and temozolomide was determined by reversed phase high performance liquid chromatography in mixtures incubated under conditions identical to those described before. MTIC was generated chemically from temozolomide and HMMTIC metabolically from dacarbazine. Using [14C]temozolomide, it was found that, in mice, the major route of excretion of the drug is via the kidneys. An acidic metabolite (metabolite I) was found in the urine of mice which had received temozolomide but its identity has not been established. 1H NMR, UV and chemical analyses revealed that Metabolite I possesses an intact NNN linkage and the site of metabolism is at the N3 methyl group. A further acidic metabolite (metabolite II) was found in the urine of patients. Metabolite II was unambiguously identified as the 8-carboxylic acid derivative of temozolomide. In vitro cytotoxicity assay showed that ony metabolite II is cytotoxic but not metabolite I. Pharmacokinetic studies of temozolomide and MTIC in vivo were performed on mice bearing TLX5 tumour. Temozolomide was eliminated from the plasma monophasically with a t1/2 of 0.7hr. MTIC was identified as a product of decomposition. MTIC was eliminated rapidly with a t1/2 of 2min. Though temozolomide shares many biochemical and biological similarities with clinically used dacarbazine, the results obtained in this study show that it differs markedly in its pharmacokinetic properties from dacarbazine, as temozolomide produced relatively sustained plasma levels which were reflected by drug concentrations in the tumour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

South Asians have a higher risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) than white Caucasians, for a given BMI. Premature biological ageing, assessed by reduction in telomere length (TL), may be mediated by factors resulting from altered metabolic profiles associated with obesity. We hypothesise that ethnicity and metabolic status represent detrimental factors contributing to premature biological ageing. Therefore we assessed TL in two South Asian, age and BMI-matched cohorts [T2DM (n = 142) versus non-T2DM (n = 76)] to determine the effects of BMI, gender, lipid and CVD profile on biological ageing. Genomic DNA was obtained from the UKADS cohort; biochemical and anthropometric data was collected and TL was measured by quantitative real-time PCR. Our findings indicated a gender-specific effect with reduced TL in T2DM men compared with non-T2DM men (P = 0.006). Additionally, in T2DM men, TL was inversely correlated with triglycerides and total cholesterol (r = -0.419, P <0.01; r = -0.443, P <0.01). In summary, TL was reduced amongst South Asian T2DM men and correlated with triglycerides and total cholesterol. This study highlights enhanced biological ageing among South Asian, T2DM men, which appears to be tracked by changes in lipids and BMI, suggesting that raised lipids and BMI may directly contribute to premature ageing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development and characterization of an enhanced composite skin substitute based on collagen and poly(e-caprolactone) are reported. Considering the features of excellent biocompatibility, easy-manipulated property and exempt from cross-linking related toxicity observed in the 1:20 biocomposites, skin substitutes were developed by seeding human single-donor keratinocytes and fibroblasts alone on both sides of the 1:20 biocomposite to allow for separation of two cell types and preserving cell signals transmission via micro-pores with a porosity of 28.8 ± 16.1 µm. The bi-layered skin substitute exhibited both differentiated epidermis and fibrous dermis in vitro. Less Keratinocyte Growth Factor production was measured in the co-cultured skin model compared to fibroblast alone condition indicating a favorable microenvironment for epidermal homeostasis. Moreover, fast wound closure, epidermal differentiation, and abundant dermal collagen deposition were observed in composite skin in vivo. In summary, the beneficial characteristics of the new skin substitutes exploited the potential for pharmaceutical screening and clinical application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The anaerobic skin commensal Propionibacterium acnes is an underestimated cause of human infections and clinical conditions. Previous studies have suggested a role for the bacterium in lumbar disc herniation and infection. To further investigate this, five biopsy samples were surgically excised from each of 64 patients with lumbar disc herniation. P. acnes and other bacteria were detected by anaerobic culture, followed by biochemical and PCR-based identification. In total, 24/64 (38%) patients had evidence of P. acnes in their excised herniated disc tissue. Using recA and mAb typing methods, 52% of the isolates were type II (50% of culture-positive patients), while type IA strains accounted for 28% of isolates (42% patients). Type III (11% isolates; 21% patients) and type IB strains (9% isolates; 17% patients) were detected less frequently. The MIC values for all isolates were lowest for amoxicillin, ciprofloxacin, erythromycin, rifampicin, tetracycline, and vancomycin (≤1mg/L). The MIC for fusidic acid was 1-2 mg/L. The MIC for trimethoprim and gentamicin was 2 to ≥4 mg/L. The demonstration that type II and III strains, which are not frequently recovered from skin, predominated within our isolate collection (63%) suggests that the role of P. acnes in lumbar disc herniation should not be readily dismissed. © 2013 Jess Rollason et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In animal models, transplantation of bone marrow stromal cells (MSC) into the spinal cord following injury enhances axonal regeneration and promotes functional recovery. How these improvements come about is currently unclear. We have examined the interaction of MSC with neurons, using an established in vitro model of nerve growth, in the presence of substrate-bound extracellular molecules that are thought to inhibit axonal regeneration, i.e., neural proteoglycans (CSPG), myelin associated glycoprotein (MAG) and Nogo-A. Each of these molecules repelled neurite outgrowth from dorsal root ganglia (DRG) in a concentration-dependent manner. However, these nerve-inhibitory effects were much reduced in MSC/DRG co-cultures. Video microscopy demonstrated that MSC acted as "cellular bridges" and also "towed" neurites over the nerve-inhibitory substrates. Whereas conditioned medium from MSC cultures stimulated DRG neurite outgrowth over type I collagen, it did not promote outgrowth over CSPG, MAG or Nogo-A. These findings suggest that MSC transplantation may promote axonal regeneration both by stimulating nerve growth via secreted factors and also by reducing the nerve-inhibitory effects of the extracellular molecules present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.