563 resultados para Bicontinuous nanocomposites
Resumo:
Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm(-1) for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10(-20) to 10(-4) S/cm. The storage modulus (G') versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of 'pseudo-solid-like' behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical proper-ties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (T.) and fraction of PE that was crystalline (F-c) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We describe a single step method to synthesise lead sulphide (PbS) nanocrystals directly in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV). This method allows size control of the nanocrystal via co-solvent ratios. We find good agreement between nanocrystal sizes determined by transmission electron microscopy and sizes theoretically determined from the absorption edge of the nanocrystals. Finally we show that this synthesis technique is not restricted to MEH-PPV and demonstrate that nanocrystals can be grown in Poly(3-hexylthiophene-2,5-diyl) (P3HT). (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The addition of small quantities (similar to 5 wt pct) layered silicates into polymer materials has the potential to greatly increase the modulus without adversely affecting the toughness or processability of the composite. The effect of microstructural features in the polymer nanocomposite and their possible effects on the mechanical properties with particular reference to linear low density polyethylene (LLDPE)/montmorillonite nanocomposites was discussed.
Resumo:
We herein report the synthesis of organic-inorganic hybrid poly(methyl methacrylate) containing 1 polyhedral oligosilsesquioxanes. Octakis(3-hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) was synthesized from octakis(hydridodimethylsiloxy)octasilsesquioxane [Si8O12(OSiMe2H)(8), Q(8)M(8)(H)] following literature procedures. Octakis(tnethacryloxypropyldimethylsiloxy) octasilsesquioxane (OMPS) was synthesized via the reaction of methacryloyl chloride or methacrylic acid anhydride with OHPS, with the latter giving improved purity. Polymerization of OMPS with methyl inethacrylate using a dibenzoylperoxide initiator gave a highly cross-linked polymer. Characterization of the polymer was performed using Fourier transform IR spectroscopy, Si-29 NMR, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, and transmission electron microscopy with energy-dispersive X-ray analysis. The polymer was found to be largely homogeneous. Increasing the OMPS concentration in the polymer gave increased decomposition and glass transition temperatures.
Resumo:
Water-in-oil microemulsions (w/o ME) capable of undergoing a phase-transition to lamellar liquid crystals (LC) or bicontinuous ME upon aqueous dilution were formulated using Crodarnol EO, Crill 1 and Crillet 4, an alkanol or alkanediol as cosurfactant and water. The hypothesis that phase-transition of ME to LC may be induced by tears and serve to prolong precomeal retention was tested. The ocular irritation potential of components and formulations was assessed using a modified hen's egg chorioallantoic membrane test (HET-CAM) and the preocular retention of selected formulations was investigated in rabbit eye using gamma scintigraphy. Results showed that Crill 1, Crillet 4 and Crodamol EO were non-irritant. However, all other cosurfactants investigated were irritant and their irritation was dependent on their carbon chain length. A w/o ME formulated without cosurfactant showed a protective effect when a strong irritant (0.1 M NaOH) was used as the aqueous phase. Precorneal clearance studies revealed that the retention of colloidal and coarse dispersed systems was significantly greater than an aqueous solution with no significant difference between ME systems (containing 5% and 10% water) as well as o/w emulsion containing 85% water. Conversely, a LC system formulated without cosurfactant displayed a significantly greater retention compared to other formulations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An analysis of thermal degradation products evolved during the melt processing of organo-layered silicates (OLS) was carried out via the use of a solid phase microextraction (SPME) technique. Two commerical OLSs and one produced in-house were prepared for comparision. The solid phase microextraction technique proved to be a very effective technique for investigating the degradation of the OLS at a specific processing temperature. The results showed that most available OLSs will degrade under typical conditions required for the melt processing of many polymers, including thermoplastic polyurethanes. It is suggested that these degradation products may lead to changes in the structure and properties of the final polymer, particularly in thermoplastic polyurethanes, which seem significantly succeptable to the presence of these products. It is also suggested that many commercially available OLSs are produced in such a way that results in an excess of unbound organic modifier, giving rise to a greater quantity of degradation products. All OLSs where compared and characterised by TGA and GC-MS. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Understanding the interlayer swelling and molecular packing in organoclays is important to the formation and design of polymer nanocomposites. This paper presents recent experimental and molecular simulation studies on a variety of organoclays that show a linear relationship between the increase of d-spacing and the mass ratio between organic and clay. A denser molecular packing is observed in organoclays containing surfactants with hydroxyl-ethyl units. Moreover, our simulation results show that the head (nitrogen) groups are essentially tethered to the clay surface while the long hydrocarbon chains tend to adopt a layering structure with disordered conformation, which contrasts with the previous assumptions of either the chains lying parallel to the clay surface or being tilted at rather precise angles. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.
Resumo:
We report a simple but efficient method to prepare stable homogeneous suspensions containing monodispersed MgAl layered double hydroxide (LDH) nanoparticles that have wide promising applications in cellular drug ( gene) delivery, polymer/LDH nanocomposites, and LDH thin films for catalysis, gas separation, sensing, and electrochemical materials. This new method involves a fast coprecipitation followed by controlled hydrothermal treatment under different conditions and produces stable homogeneous LDH suspensions under variable hydrothermal treatment conditions. Moreover, the relationship between the LDH particle size and the hydrothermal treatment conditions ( time, temperature, and concentration) has been systematically investigated, which indicates that the LDH particle size can be precisely controlled between 40 and 300 nm by adjusting these conditions. The reproducibility of making the identical suspensions under identical conditions has been confirmed with a number of experiments. The dispersion of agglomerated LDH aggregates into individual LDH crystallites during the hydrothermal treatment has been further discussed. This method has also been successfully applied to preparing stable homogeneous LDH suspensions containing various other metal ions such as Ni2+, Fe2+, Fe3+, Co2+, Cd2+, and Gd3+ in the hydroxide layers and many inorganic anions such as Cl-, CO32-, NO3-, and SO42-.
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Phase diagrams of the pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and propylene glycol with and without butanol as a co-surfactant were prepared. Areas containing optically isotropic, one-phase systems were identified and samples therein designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types of microemulsions led to the formation of nanoparticles, which had an average size of 244 +/- 25 nm, an average polydispersity index of 0.15 +/- 0.04 and a zeta-potential of -17 +/- 3 mV. The formation of particles from water-free microemulsions of different types is surprising, particularly considering that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate) nanoparticles opens up interesting opportunities for the encapsulation of bioactives which do not have suitable properties for encapsulation on the basis of water-containing microemulsions.
Resumo:
This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Polymer processing experiments have been conducted with a twin screw extruder. Different formulations of starch-based nanocomposites are being tested in a pilot scale film blowing tower. The physical properties of different starch-based films have been examined with thermal and mechanical analysis and X-ray diffraction. The results show that the addition of organoclay significantly improves both the processing and tensile properties over the original starch blends. The mechanical and thermal properties of the blends are also sensitive to the scale the clay particles are dispersed.
Resumo:
The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20 – 500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, while maintaining monodispersity, is desirable. Here, while calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated.