923 resultados para Bengal, Bay of
Resumo:
Species composition and abundance of phytoplankton and chlorophyll concentration were measured at three horizons of 9 stations in the Nha Trang Bay of the South China Sea in March 1998. Vertical distribution of fluorescence parameters, temperature and irradiance were measured in the 0-18 m layer of the water column at 21 stations. It was shown that according to biomass (B) and chlorophyll concentration (Chl) the Bay is mezotrophic. B and Chl in the water column increased seaward. Mean values of Chl in the southern part of the Bay exceeded those in northern part. Mean values of B were similar. B and Chl in the bottom layer exceeded ones in the upper layer. Diatoms dominated in species diversity and abundance. Diatom Guinardia striata made the main contribution to phytoplankton biomass. Similarity of phytoplankton was high. In the upper layer phytoplankton was photoinhibited during the most part of the light period, but at the bottom photosynthetic activity was high. Water column B varied in an order of magnitude during the daily cycle mainly because of B variations in the bottom layer due to tide flow.
Resumo:
North Atlantic climate variations are reflected in sedimentary records from the northern Indian Ocean in which two basins, the Arabian Sea and the Bay of Bengal, are strongly affected by the monsoon. Contrary to the Bay of Bengal the Arabian Sea plays an important role in the global marine nitrogen cycle. In its mid-water oxygen minimum zone (OMZ) bioavailable fixed nitrogen is reduced to nitrogen gas (NO3- - > N2), whereas oxygen concentrations are slightly above the threshold of nitrate reduction in the OMZ of the Bay of Bengal. A coral colony (Porites lutea) growing south of Port Blair on the Andaman Islands in the Bay of Bengal was studied for its response to changes in the monsoon system and its link to temperature changes in the North Atlantic Ocean, between 1975 and 2006. Its linear extension rates, d13C and d18O values measured within the coral skeleton reveal a strong seasonality, which seems to be caused by the monsoon-driven reversal of the surface ocean circulation. The sampling site appears to be influenced by low salinity Bay of Bengal Water during the NE monsoon (boreal winter) and by the high salinity Arabian Sea Water during the SW monsoon in summer. The high salinity Arabian Sea Water circulates along with the Summer Monsoon Current (S-MC) from the Arabia Sea into the Bay of Bengal. Decreasing d18O and reconstructed salinity values correlate to the increasing SSTs in the North Atlantic Ocean indicating a reduced influence of the S-MC at the sampling site in the course of northern hemispheric warming. During such periods oxygen-depletion became stronger in the OMZ of the Arabian Sea as indicated by the sedimentary records. A reduced propagation of oxygen-depleted high salinity Arabian Sea Water into the Bay of Bengal could be a mechanism maintaining oxygen concentration above the threshold of nitrate reduction in the OMZ of the Bay of Bengal in times of global warming.
Resumo:
The distribution of temperature and salinity, current velocities, suspended particulate matter, bottom sediments, bottom morphology, and planktonic and benthic organisms during the summer period are studied in the estuary of the large Onega River and coastal areas of the Onega Bay (White Sea) influenced by interacting marine and riverine factors.