962 resultados para Bean leaf beetle
Resumo:
Disease-weather relationships influencing Septoria leaf blotch (SLB) preceding growth stage (GS) 31 were identified using data from 12 sites in the UK covering 8 years. Based on these relationships, an early-warning predictive model for SLB on winter wheat was formulated to predict the occurrence of a damaging epidemic (defined as disease severity of 5% or > 5% on the top three leaf layers). The final model was based on accumulated rain > 3 mm in the 80-day period preceding GS 31 (roughly from early-February to the end of April) and accumulated minimum temperature with a 0A degrees C base in the 50-day period starting from 120 days preceding GS 31 (approximately January and February). The model was validated on an independent data set on which the prediction accuracy was influenced by cultivar resistance. Over all observations, the model had a true positive proportion of 0.61, a true negative proportion of 0.73, a sensitivity of 0.83, and a specificity of 0.18. True negative proportion increased to 0.85 for resistant cultivars and decreased to 0.50 for susceptible cultivars. Potential fungicide savings are most likely to be made with resistant cultivars, but such benefits would need to be identified with an in-depth evaluation.
Resumo:
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi-controlled environment glasshouses in which the thermal regimes of cacao-growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological will (cherelle will) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short-term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5 degrees C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of beam number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and beam number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of beam size and beam lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23 degrees C and 24 degrees C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.
Resumo:
A flavonoid survey was carried out on 45 taxa from the genera Shorea, Hopea, Parashorea, Neobalanocarpus, and Dryobalanops of the tribe Shoreae in the Dipterocarpaceae. The study showed significant chemotaxonomic differences in leaf flavonoid aglycone patterns and the presence of tannins in these taxa. The flavonoid patterns are useful in the delimitation of some taxa. For example, the genus Parashorea is distinguished by the universal presence of kaempferol 3-methyl ether, and the monotypic genus Neobalanocarpus is unique in not producing ellagic and gallo tannins. The presence of chalcones and flavone C-glycosides supports the separation of the genus Hopea into two sections, section Dryobalanoides and section Hopea in Ashton's classification, which is based on the type of venation. The flavonoid distributions in this study show that they can be very useful for differentiating between the Balau group in the genus Shorea, and some scaly barked Hopea species, particularly H. helferi (lintah bukit), H. nutans (giam), and H. ferrea (malut). (C) 2008 The Linnean Society of London.
Resumo:
An outdoor experiment was conducted to increase understanding of apical leaf necrosis in the presence of pathogen infection. Holcus lanatus seeds and Puccinia coronata spores were collected from two adjacent and otherwise similar habitats with differing long-term N fertilization levels. After inoculation, disease and necrosis dynamics were observed during the plant growing seasons of 2003 and 2006. In both years high nutrient availability resulted in earlier disease onset, a higher pathogen population growth rate, earlier physiological apical leaf necrosis onset and a reduced time between disease onset and apical leaf necrosis onset. Necrosis rate was shown to be independent of nutrient availability. The results showed that in these nutrient-rich habitats H. lanatus plants adopted necrosis mechanisms which wasted more nutrients. There was some indication that these necrosis mechanisms were subject to local selection pressures, but these results were not conclusive. The findings of this study are consistent with apical leaf necrosis being an evolved defence mechanism.
Resumo:
Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Different molecular methods: BOX-PCR fingerprinting, R-FLP-PCR and sequencing of the 16S rDNA as well as the symbiotic genes nodC and nifH, were used to study the genetic diversity within a collection of nodulating bean rhizobia isolated from five soils of North-West Morocco. BOX fingerprints analysis of 241 isolates revealed 19 different BOX profiles. According to the PFLP-PCR and sequencing of 16S rDNA carried out on 45 representative isolates, 5 genotypes were obtained corresponding to the species Rhizobium etli, R. tropici, R. gallicum, R. leguminosarum and Sinorhizobium meliloti. The most abundant species were R. etli and R. tropici (61% and 24%, respectively). A high intraspecific diversity was observed among the R. etli isolates, while the R. tropici group was homogeneous. Most of the rhizobia studied belong to species known to nodulate common bean, while 2 species were unconventional microsymbionts: R. leguminosarum biovar viciae and S. meliloti. Our results, especially the nodulation promiscuity of common bean and the relation between the predominance of some species of rhizobia in particular soils and the salt content of these soils, indicate that there is a real need for a better understanding of the distribution of common bean rhizobia species in the soils of Morocco before any inoculation attempt.
Resumo:
Apical leaf necrosis is a physiological process related to nitrogen (N) dynamics in the leaf. Pathogens use leaf nutrients and can thus accelerate this physiological apical necrosis. This process differs from necrosis occurring around pathogen lesions (lesion-induced necrosis), which is a direct result of the interaction between pathogen hyphae and leaf cells. This paper primarily concentrates on apical necrosis, only incorporating lesion-induced necrosis by necessity. The relationship between pathogen dynamics and physiological apical leaf necrosis is modelled through leaf nitrogen dynamics. The specific case of Puccinia triticina infections on Triticum aestivum flag leaves is studied. In the model, conversion of indirectly available N in the form of, for example, leaf cell proteins (N-2(t)) into directly available N (N-1(t), i.e. the form of N that can directly be used by either pathogen or plant sinks) results in apical necrosis. The model reproduces observed trends of disease severity, apical necrosis and green leaf area (GLA) and leaf N dynamics of uninfected and infected leaves. Decreasing the initial amount of directly available N results in earlier necrosis onset and longer necrosis duration. Decreasing the initial amount of indirectly available N, has no effect on necrosis onset and shortens necrosis duration. The model could be used to develop hypotheses on how the disease-GLA relation affects yield loss, which can be tested experimentally. Upon incorporation into crop simulation models, the model might provide a tool to more accurately estimate crop yield and effects of disease management strategies in crops sensitive to fungal pathogens.
Resumo:
The use of bioluminescence was evaluated as a tool to study Pseudomonas syringae population dynamics in susceptible and resistant plant environments. Plasmid pGLITE, containing the luxCDABE genes from Photorhabdus luminescens, was introduced into Pseudomonas syringae pv. phaseolicola race 7 strain 1449B, a Gram-negative pathogen of bean (Phaseolus vulgaris). Bacteria recovered from plant tissue over a five-day period were enumerated by counting numbers of colony forming units and by measurement of bioluminescence. Direct measurement of bioluminescence from leaf disc homogenates consistently reflected bacterial growth as determined by viable counting, but also detected subtle effects of the plant resistance response on bacterial viability. This bioluminescence procedure enables real time measurement of bacterial metabolism and population dynamics in planta, obviates the need to carry out labour intensive and time consuming traditional enumeration techniques and provides a sensitive assay for studying plant effects on bacterial cells.
Resumo:
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.
Resumo:
Although adult Rumex obtusifolius are problematic weeds, their seedlings are poor competitors against Lolium perenne, particularly in established swards. We investigated the possibility of using this weakness to augment control of R. obtusifolius seedlings with combinations of Gastrophysa viridula (Coleoptera: Chrysomelidae) and the rust fungus Uromyces rumicis. Rumex obtusifolius seedlings were grown in competition with L. perenne sown at different rates and times after R. obtusifolius: they competed successfully with L. perenne when sown 21 days before the grass. Sowing both species at the same time resulted in a dominant grass sward, with R. obtusifolius becoming dominant when sown 42 days prior to L. perenne. Grass sowing rate had no effect on R. obtusifolius growth or biomass. A second experiment investigated how competition from L. perenne sown 21 days after R. obtusifolius combined with damage from G. viridula and/or U. rumicis (applied at either the 3-4- or 10-13-leaf stage, or at both stages) affected the growth and final biomass of R. obtusifolius. Beetle grazing at the latter leaf stage was the only treatment that reduced R. obtusifolius biomass, although rust infection at the earlier application led to an increase in shoot and root weight. The results are discussed in terms of the potential for use of these agents in the field.
Resumo:
A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.