891 resultados para Bayesian risk prediction models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The prediction of rockfall travel distance below a rock cliff is an indispensable activity in rockfall susceptibility, hazard and risk assessment. Although the size of the detached rock mass may differ considerably at each specific rock cliff, small rockfall (<100 m3) is the most frequent process. Empirical models may provide us with suitable information for predicting the travel distance of small rockfalls over an extensive area at a medium scale (1:100 000¿1:25 000). "Solà d'Andorra la Vella" is a rocky slope located close to the town of Andorra la Vella, where the government has been documenting rockfalls since 1999. This documentation consists in mapping the release point and the individual fallen blocks immediately after the event. The documentation of historical rockfalls by morphological analysis, eye-witness accounts and historical images serve to increase available information. In total, data from twenty small rockfalls have been gathered which reveal an amount of a hundred individual fallen rock blocks. The data acquired has been used to check the reliability of the main empirical models widely adopted (reach and shadow angle models) and to analyse the influence of parameters which affecting the travel distance (rockfall size, height of fall along the rock cliff and volume of the individual fallen rock block). For predicting travel distances in maps with medium scales, a method has been proposed based on the "reach probability" concept. The accuracy of results has been tested from the line entailing the farthest fallen boulders which represents the maximum travel distance of past rockfalls. The paper concludes with a discussion of the application of both empirical models to other study areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: Darunavir was designed for activity against HIV resistant to other protease inhibitors (PIs). We assessed the efficacy, tolerability and risk factors for virological failure of darunavir for treatment-experienced patients seen in clinical practice. METHODS: We included all patients in the Swiss HIV Cohort Study starting darunavir after recording a viral load above 1000 HIV-1 RNA copies/mL given prior exposure to both PIs and nonnucleoside reverse transcriptase inhibitors. We followed these patients for up to 72 weeks, assessed virological failure using different loss of virological response algorithms and evaluated risk factors for virological failure using a Bayesian method to fit discrete Cox proportional hazard models. RESULTS: Among 130 treatment-experienced patients starting darunavir, the median age was 47 years, the median duration of HIV infection was 16 years, and 82% received mono or dual antiretroviral therapy before starting highly active antiretroviral therapy. During a median patient follow-up period of 45 weeks, 17% of patients stopped taking darunavir after a median exposure of 20 weeks. In patients followed beyond 48 weeks, the rate of virological failure at 48 weeks was at most 20%. Virological failure was more likely where patients had previously failed on both amprenavir and saquinavir and as the number of previously failed PI regimens increased. CONCLUSIONS: As a component of therapy for treatment-experienced patients, darunavir can achieve a similar efficacy and tolerability in clinical practice to that seen in clinical trials. Clinicians should consider whether a patient has failed on both amprenavir and saquinavir and the number of failed PI regimens before prescribing darunavir.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: Plasma concentrations of imatinib differ largely between patients despite same dosage, owing to large inter-individual variability in pharmacokinetic (PK) parameters. As the drug concentration at the end of the dosage interval (Cmin) correlates with treatment response and tolerability, monitoring of Cmin is suggested for therapeutic drug monitoring (TDM) of imatinib. Due to logistic difficulties, random sampling during the dosage interval is however often performed in clinical practice, thus rendering the respective results not informative regarding Cmin values.Objectives: (I) To extrapolate randomly measured imatinib concentrations to more informative Cmin using classical Bayesian forecasting. (II) To extend the classical Bayesian method to account for correlation between PK parameters. (III) To evaluate the predictive performance of both methods.Methods: 31 paired blood samples (random and trough levels) were obtained from 19 cancer patients under imatinib. Two Bayesian maximum a posteriori (MAP) methods were implemented: (A) a classical method ignoring correlation between PK parameters, and (B) an extended one accounting for correlation. Both methods were applied to estimate individual PK parameters, conditional on random observations and covariate-adjusted priors from a population PK model. The PK parameter estimates were used to calculate trough levels. Relative prediction errors (PE) were analyzed to evaluate accuracy (one-sample t-test) and to compare precision between the methods (F-test to compare variances).Results: Both Bayesian MAP methods allowed non-biased predictions of individual Cmin compared to observations: (A) - 7% mean PE (CI95% - 18 to 4 %, p = 0.15) and (B) - 4% mean PE (CI95% - 18 to 10 %, p = 0.69). Relative standard deviations of actual observations from predictions were 22% (A) and 30% (B), i.e. comparable to the intraindividual variability reported. Precision was not improved by taking into account correlation between PK parameters (p = 0.22).Conclusion: Clinical interpretation of randomly measured imatinib concentrations can be assisted by Bayesian extrapolation to maximum likelihood Cmin. Classical Bayesian estimation can be applied for TDM without the need to include correlation between PK parameters. Both methods could be adapted in the future to evaluate other individual pharmacokinetic measures correlated to clinical outcomes, such as area under the curve(AUC).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract: Asthma prevalence in children and adolescents in Spain is 10-17%. It is the most common chronic illness during childhood. Prevalence has been increasing over the last 40 years and there is considerable evidence that, among other factors, continued exposure to cigarette smoke results in asthma in children. No statistical or simulation model exist to forecast the evolution of childhood asthma in Europe. Such a model needs to incorporate the main risk factors that can be managed by medical authorities, such as tobacco (OR = 1.44), to establish how they affect the present generation of children. A simulation model using conditional probability and discrete event simulation for childhood asthma was developed and validated by simulating realistic scenario. The parameters used for the model (input data) were those found in the bibliography, especially those related to the incidence of smoking in Spain. We also used data from a panel of experts from the Hospital del Mar (Barcelona) related to actual evolution and asthma phenotypes. The results obtained from the simulation established a threshold of a 15-20% smoking population for a reduction in the prevalence of asthma. This is still far from the current level in Spain, where 24% of people smoke. We conclude that more effort must be made to combat smoking and other childhood asthma risk factors, in order to significantly reduce the number of cases. Once completed, this simulation methodology can realistically be used to forecast the evolution of childhood asthma as a function of variation in different risk factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolution and geographic extent. Here, we assess whether climate-change induced habitat losses predicted at the European scale (10x10' grid cells) are also predicted from local scale data and modeling (25x25m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10x10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Risk theory has been a very active research area over the last decades. The main objectives of the theory are to find adequate stochastic processes which can model the surplus of a (non-life) insurance company and to analyze the risk related quantities such as ruin time, ruin probability, expected discounted penalty function and expected discounted dividend/tax payments. The study of these ruin related quantities provides crucial information for actuaries and decision makers. This thesis consists of the study of four different insurance risk models which are essentially related. The ruin and related quantities are investigated by using different techniques, resulting in explicit or asymptotic expressions for the ruin time, the ruin probability, the expected discounted penalty function and the expected discounted tax payments. - La recherche en théorie du risque a été très dynamique au cours des dernières décennies. D'un point de vue théorique, les principaux objectifs sont de trouver des processus stochastiques adéquats permettant de modéliser le surplus d'une compagnie d'assurance non vie et d'analyser les mesures de risque, notamment le temps de ruine, la probabilité de ruine, l'espérance de la valeur actuelle de la fonction de pénalité et l'espérance de la valeur actuelle des dividendes et taxes. L'étude de ces mesures associées à la ruine fournit des informations cruciales pour les actuaires et les décideurs. Cette thèse consiste en l'étude des quatre différents modèles de risque d'assurance qui sont essentiellement liés. La ruine et les mesures qui y sont associées sont examinées à l'aide de différentes techniques, ce qui permet d'induire des expressions explicites ou asymptotiques du temps de ruine, de la probabilité de ruine, de l'espérance de la valeur actuelle de la fonction de pénalité et l'espérance de la valeur actuelle des dividendes et taxes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Prognostic models have been developed to predict survival of patients with newly diagnosed glioblastoma (GBM). To improve predictions, models should be updated with information at the recurrence. We performed a pooled analysis of European Organization for Research and Treatment of Cancer (EORTC) trials on recurrent glioblastoma to validate existing clinical prognostic factors, identify new markers, and derive new predictions for overall survival (OS) and progression free survival (PFS).¦METHODS: Data from 300 patients with recurrent GBM recruited in eight phase I or II trials conducted by the EORTC Brain Tumour Group were used to evaluate patient's age, sex, World Health Organisation (WHO) performance status (PS), presence of neurological deficits, disease history, use of steroids or anti-epileptics and disease characteristics to predict PFS and OS. Prognostic calculators were developed in patients initially treated by chemoradiation with temozolomide.¦RESULTS: Poor PS and more than one target lesion had a significant negative prognostic impact for both PFS and OS. Patients with large tumours measured by the maximum diameter of the largest lesion (⩾42mm) and treated with steroids at baseline had shorter OS. Tumours with predominant frontal location had better survival. Age and sex did not show independent prognostic values for PFS or OS.¦CONCLUSIONS: This analysis confirms performance status but not age as a major prognostic factor for PFS and OS in recurrent GBM. Patients with multiple and large lesions have an increased risk of death. With these data prognostic calculators with confidence intervals for both medians and fixed time probabilities of survival were derived.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Cytomegalovirus (CMV) disease remains an important problem in solid-organ transplant recipients, with the greatest risk among donor CMV-seropositive, recipient-seronegative (D(+)/R(-)) patients. CMV-specific cell-mediated immunity may be able to predict which patients will develop CMV disease. METHODS: We prospectively included D(+)/R(-) patients who received antiviral prophylaxis. We used the Quantiferon-CMV assay to measure interferon-γ levels following in vitro stimulation with CMV antigens. The test was performed at the end of prophylaxis and 1 and 2 months later. The primary outcome was the incidence of CMV disease at 12 months after transplant. We calculated positive and negative predictive values of the assay for protection from CMV disease. RESULTS: Overall, 28 of 127 (22%) patients developed CMV disease. Of 124 evaluable patients, 31 (25%) had a positive result, 81 (65.3%) had a negative result, and 12 (9.7%) had an indeterminate result (negative mitogen and CMV antigen) with the Quantiferon-CMV assay. At 12 months, patients with a positive result had a subsequent lower incidence of CMV disease than patients with a negative and an indeterminate result (6.4% vs 22.2% vs 58.3%, respectively; P < .001). Positive and negative predictive values of the assay for protection from CMV disease were 0.90 (95% confidence interval [CI], .74-.98) and 0.27 (95% CI, .18-.37), respectively. CONCLUSIONS: This assay may be useful to predict if patients are at low, intermediate, or high risk for the development of subsequent CMV disease after prophylaxis. CLINICAL TRIALS REGISTRATION: NCT00817908.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydrological and biogeochemical processes that operate in catchments influence the ecological quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. Most models that seek to characterise the delivery of diffuse pollutants from land to water are reductionist. The multitude of processes that are parameterised in such models to ensure generic applicability make them complex and difficult to test on available data. Here, we outline an alternative - data-driven - inverse approach. We apply SCIMAP, a parsimonious risk based model that has an explicit treatment of hydrological connectivity. we take a Bayesian approach to the inverse problem of determining the risk that must be assigned to different land uses in a catchment in order to explain the spatial patterns of measured in-stream nutrient concentrations. We apply the model to identify the key sources of nitrogen (N) and phosphorus (P) diffuse pollution risk in eleven UK catchments covering a range of landscapes. The model results show that: 1) some land use generates a consistently high or low risk of diffuse nutrient pollution; but 2) the risks associated with different land uses vary both between catchments and between nutrients; and 3) that the dominant sources of P and N risk in the catchment are often a function of the spatial configuration of land uses. Taken on a case-by-case basis, this type of inverse approach may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for freshwater ecosystems. (C) 2012 Elsevier B.V. All rights reserved.