963 resultados para BRAIN-REGIONS
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD-TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP 'continuum' overlapping with FTLD-TDP disease subtypes 2 and 3. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM.
Resumo:
Healthy brain functioning depends on efficient communication of information between brain regions, forming complex networks. By quantifying synchronisation between brain regions, a functionally connected brain network can be articulated. In neurodevelopmental disorders, where diagnosis is based on measures of behaviour and tasks, a measure of the underlying biological mechanisms holds promise as a potential clinical tool. Graph theory provides a tool for investigating the neural correlates of neuropsychiatric disorders, where there is disruption of efficient communication within and between brain networks. This research aimed to use recent conceptualisation of graph theory, along with measures of behaviour and cognitive functioning, to increase understanding of the neurobiological risk factors of atypical development. Using magnetoencephalography to investigate frequency-specific temporal dynamics at rest, the research aimed to identify potential biological markers derived from sensor-level whole-brain functional connectivity. Whilst graph theory has proved valuable for insight into network efficiency, its application is hampered by two limitations. First, its measures have hardly been validated in MEG studies, and second, graph measures have been shown to depend on methodological assumptions that restrict direct network comparisons. The first experimental study (Chapter 3) addressed the first limitation by examining the reproducibility of graph-based functional connectivity and network parameters in healthy adult volunteers. Subsequent chapters addressed the second limitation through adapted minimum spanning tree (a network analysis approach that allows for unbiased group comparisons) along with graph network tools that had been shown in Chapter 3 to be highly reproducible. Network topologies were modelled in healthy development (Chapter 4), and atypical neurodevelopment (Chapters 5 and 6). The results provided support to the proposition that measures of network organisation, derived from sensor-space MEG data, offer insights helping to unravel the biological basis of typical brain maturation and neurodevelopmental conditions, with the possibility of future clinical utility.
Resumo:
Auditory sensory gating (ASG) is the ability in individuals to suppress incoming irrelevant sensory input, indexed by evoked response to paired auditory stimuli. ASG is impaired in psychopathology such as schizophrenia, in which it has been proposed as putative endophenotype. This study aims to characterise electrophysiological properties of the phenomenon using MEG in time and frequency domains as well as to localise putative networks involved in the process at both sensor and source level. We also investigated the relationship between ASG measures and personality profiles in healthy participants in the light of its candidate endophenotype role in psychiatric disorders. Auditory evoked magnetic fields were recorded in twenty seven healthy participants by P50 ‘paired-click’ paradigm presented in pairs (conditioning stimulus S1- testing stimulus S2) at 80dB, separated by 250msec with inter trial interval of 7-10 seconds. Gating ratio in healthy adults ranged from 0.5 to 0.8 suggesting dimensional nature of P50 ASG. The brain regions active during this process were bilateral superior temporal gyrus (STG) and bilateral inferior frontal gyrus (IFG); activation was significantly stronger in IFG during S2 as compared to S1 (at p<0.05). Measures of effective connectivity between these regions using DCM modelling revealed the role of frontal cortex in modulating ASG as suggested by intracranial studies, indicating major role of inhibitory interneuron connections. Findings from this study identified a unique event-related oscillatory pattern for P50 ASG with alpha (STG)-beta (IFG) desynchronization and increase in cortical oscillatory gamma power (IFG) during S2 condition as compared to S1. These findings show that the main generator for P50 response is within temporal lobe and that inhibitory interneurons and gamma oscillations in the frontal cortex contributes substantially towards sensory gating. Our findings also show that ASG is a predictor of personality profiles (introvert vs extrovert dimension).
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^
Resumo:
Background: Increased impulsivity and aberrant response inhibition have been observed in bipolar disorder (BD). This study examined the functional abnormalities and underlying neural processes during response inhibition in BD, and its relationship to impulsivity. Methods: We assessed impulsivity using the Barratt Impulsiveness Scale (BIS) and, using functional magnetic resonance imaging (fMRI), measured neural activity in response to an Affective Go-NoGo Task, consisting of emotional facial stimuli (fear, happy, anger faces) and non-emotional control stimuli (neutral female and male faces) in euthymic BD (n=23) and healthy individuals (HI; n=25). Results: BD patients were significantly more impulsive, yet did not differ from HI on accuracy or reaction time on the emotional go/no-go task. Comparing neural patterns of activation when processing emotional Go versus emotional NoGo trials yielded increased activation in BD within temporal and cingulate cortices and within prefrontal-cortical regions in HI. Furthermore, higher BIS scores for BD were associated with slower reaction times, and indicative of compensatory cognitive strategies to counter increased impulsivity. Conclusions: These findings illustrate cognition-emotion interference in BD and the observed differences in neural activation indicate potentially altered emotion modulation. Increased activation in brain regions previously shown in emotion regulation and response inhibition tasks could represent a disease-specific marker for BD
Resumo:
Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.
Resumo:
Social decision-making is often complex, requiring the decision-maker to make social inferences about another person in addition to engaging traditional decision-making processes. However, until recently, much research in neuroeconomics and behavioral economics has examined social decision-making while failing to take into account the importance of the social context and social cognitive processes that are engaged when viewing another person. Using social psychological theory to guide our hypotheses, four research studies investigate the role of social cognition and person perception in guiding economic decisions made in social contexts. The first study (Chapter 2) demonstrates that only specific types of social information engage brain regions implicated in social cognition and hinder learning in social contexts. Study 2 (Chapter 3) extends these findings and examines contexts in which this social information is used to generalize across contexts to form predictions about another person’s behavior. Study 3 (Chapter 4) demonstrates that under certain contexts these social cognitive processes may be withheld in order to more effectively complete the task at hand. Last, Study 4 (Chapter 5) examines how this knowledge of social cognitive processing can be used to change behavior in a prosocial group context. Taken together, these studies add to the growing body of literature examining decision-making in social contexts and highlight the importance of social cognitive processing in guiding these decisions. Although social cognitive processing typically facilitates social interactions, these processes may alter economic decision-making in social contexts.
Contributions of Dorsal/Ventral Hippocampus and Dorsolateral/Dorsomedial Striatum to Interval Timing
Resumo:
Humans and animals have remarkable capabilities in keeping time and using time as a guide to orient their learning and decision making. Psychophysical models of timing and time perception have been proposed for decades and have received behavioral, anatomical and pharmacological data support. However, despite numerous studies that aimed at delineating the neural underpinnings of interval timing, a complete picture of the neurobiological network of timing in the seconds-to-minutes range remains elusive. Based on classical interval timing protocols and proposing a Timing, Immersive Memory and Emotional Regulation (TIMER) test battery, the author investigates the contributions of the dorsal and ventral hippocampus as well as the dorsolateral and the dorsomedial striatum to interval timing by comparing timing performances in mice after they received cytotoxic lesions in the corresponding brain regions. On the other hand, a timing-based theoretical framework for the emergence of conscious experience that is closely related to the function of the claustrum is proposed so as to serve both biological guidance and the research and evolution of “strong” artificial intelligence. Finally, a new “Double Saturation Model of Interval Timing” that integrates the direct- and indirect- pathways of striatum is proposed to explain the set of empirical findings.
Resumo:
The lateral septum is associated with the regulation of innate behavior, motivation, and locomotion. Its complex interconnections with cognitive and affective regions such as the hippocampus, hypothalamus, and medial septum have made it an attractive region for studying how motivation regulates behavior in context-specific settings. This GABAergic brain region’s main output is the lateral hypothalamus, which provides downstream signaling of motor commands. Even though stimulation of lateral septum projections to the hypothalamus have shown to decrease running speed in free behaving mice, characterizing movement kinematics due to LS activation has not been studied. GABAergic medium spiny neurons of the lateral septum were selectively activated through the use of optogenetic techniques in transgenic mice. Photostimulation of the lateral septum at theta frequencies caused a non-significant decrease in head and back speed. 3D motion analysis of body movement under photostimulation was quantified, revealing a slow, linear decrease of body speed as photostimulation progressed. These results support the role of lateral septum activation in movement regulation and shed light on the specific manner in which stimulation of the LS gradually decreases movement speed.
Resumo:
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF’s local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Resumo:
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Resumo:
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Resumo:
Arginine vasopressin (AVP), a nine amino acid neuropeptide (CYFQNCPRG- NH2) fulfills a dual function: (i) in the periphery, AVP acts as a peptide hormone and (ii) in the CNS, AVP is a neuromodulatory peptide. AVP produces its effects through 3 AVP receptors (AVPRs). AVPR1a and AVPR1b are expressed in the CNS and periphery, whilst AVPR2 is not found centrally but instead solely expressed in the kidneys. Recent evidence revealed a high density of AVP-binding sites in the juxtacapsular nucleus of the bed nucleus of the stria terminalis (jxBNST). While in other regions of the brain, AVP acts at AVPRs to regulate an array of biological processes, including male-typical social behaviours, social memory, stress adaptation, fear, anxiety, and fluid homeostasis, its role in the jxBNST remains elusive. Furthermore, the neurophysiological properties of AVP in the jxBNST are unknown so this study aimed to examine how AVP modulates synaptic transmission in the rat jxBNST. The BNST being one of the most notable sexually dimorphic brain regions and AVPR expression being influenced by gonadal steroids, we investigated the putative influence of sex on the modulatory effects of AVP in the jxBNST. Finally, due to AVP being released at a substantially higher concentration following periods of water deprivation, we examined changes in AVPs modulatory role following water deprivation. Male and female Long Evans rats were euthanized and brain slice whole-cell voltage-clamp electrophysiology was done in the jxBNST to measure the effects of AVP on synaptic transmission of GABA synapses. Exogenous application of AVP produced three responses; either postsynaptic long-term potentiation (LTP) of GABAA-inhibitory postsynaptic currents (IPSC), postsynaptic long-term depression (LTD) of GABAA-IPSC, or no change in GABAA-IPSC amplitudes. Interestingly, the proportion of neurons responding in each of these ways did not differ between sexes and within females was not estrous cycle-dependent. Finally, although not statistically significant, 24-hour water deprivation abolished GABAA-LTD, an effect that was not a consequence of social isolation. Taken together, our data show that AVP modulates GABAA synaptic transmission in the jxBNST in fluid homeostasis- but not sex-dependent manner.