995 resultados para B., A. P.
Resumo:
The regulation of CD4 T cell numbers during an immune response should take account of the amount of antigen (Ag), the initial frequency of Ag-specific T cells, the mix of naive versus experienced cells, and (ideally) the diversity of the repertoire. Here we describe a novel mechanism of T cell regulation that potentially deals with all of these parameters. We found that CD4 T cells establish a negative feedback loop by capturing their cognate MHC/peptide complexes from Ag-presenting cells and presenting them to Ag-experienced CD4 T cells, thereby inhibiting their recruitment into the response while allowing recruitment of naive T cells. The inhibition is Ag specific, begins at day 2 (long before Ag disappearance), and cannot be overcome by providing new Ag-loaded dendritic cells. In this way CD4 T cell proliferation is regulated in a functional relationship to the amount of Ag, while allowing naive T cells to generate repertoire variety.
Resumo:
Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the preconceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from realworld observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non-uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side-effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright ©2007 John Wiley & Sons, Ltd.