968 resultados para Atmospheric humidity
Resumo:
Objective: The aim of this study is to examine microscopically the destruction of bacterial biofilms mediated by atmospheric pressure non-thermal plasma (APNTP) at cellular level as well as at the level of biofilm structure as a whole. Methods: 3-day old bacterial biofilms were grown on polycarbonate coupons in a dual channel flow cell and were treated with an in-housed designed atmospheric pressure non-thermal plasma jet for up to 4 minutes of exposure before being examined by both confocal laser scanning microscopy (CLSM), preceded by Live/Dead bacterial viability staining, and scanning electron microscopy (SEM). Results: Differential live/dead staining followed by confocal microscopy examination revealed that biofilm eradication by APNTP was mediated by varying levels of both cell killing and physical removal. Relative extent of each mechanism was dependent on plasma operating conditions, bacterial species, growth conditions and biofilm thickness. On the other hand, SEM examination of plasma-exposed biofilms revealed a series of morphological changes exhibited by biofilm cells ranging from increased roughness of cell surface to complete cell lysis. Conclusions: Interesting mechanistic insights have been revealed by microscopic examination of plasma-treated bacterial biofilms that, when coupled with more specific biochemical studies, will not only contribute significantly to our understanding of the mechanism of plasma mediated biofilm destruction but also will help in better application-guided development of this novel anti-biofilm approach.
Resumo:
Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.
Resumo:
Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally inactive. Importantly, even in the absence of an external heat source, significant activity was obtained. This low temperature activity provides the basis for applying nonthermal plasmas to activate emission control catalysts during cold start conditions, which remains an important issue for mobile and stationary applications.
Resumo:
Boron-doped titanium dioxide (B-TiO) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm. Hydrogen production rates of B-TiO at 24 μL cm h far exceeded undoped TiO at 2.6 μL cm h. The B-TiO samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent. © 2013 The Owner Societies.
Resumo:
We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.
Resumo:
The effect of a radio-frequency driven, microscale non thermal atmospheric pressure plasma jet operated in helium with vol. 0.3% molecular oxygen gas admixture, on PC-3 prostate cancer cells has been investigated. The viability of cells exposed to the plasma was found to decrease with increasing plasma exposure time, with apoptosis through caspase and PARP cleavage being observed. High concentrations of nitrite and nitrate were detected in growth media exposed to the plasma and were found to increase in a time dependent manner post exposure. This indicates a slow release of reactive nitrogen species into the growth media, which is likely to influence cellular response to plasma exposure.
Resumo:
Evidence has accumulated of high temperature (> 4 MK) coronal emission in active region cores that corresponds to structures in equilibrium. Other studies have found evidence of evolving loops. We investigate the EUV intensity and temperature variations of short coronal loops observed in the core of NOAA Active Region 11250 on 13 July 2011. The loops, which run directly between the AR opposite polarities, are first detectable in the 94Å band of Fe XVIII, implying an effective temperature ~ 7 MK. The low temperature component of the 94 Å signal is modeled in terms of a linear superposition of the 193 Å and 171 Å signals in order to separate the hot component. After identifying the loops we have used contemporaneous HMI observations to identify the corresponding inter-moss regions, and we have investigated their time evolution in six AIA EUV channels. The results can be separated into two classes. Group 1 (94Å, 335Å, 211Å) is characterized by hotter temperatures (~2-7 MK), and Group 2 (193Å, 171Å, 131Å) by cooler temperatures (0.4 - 1.6 MK). For Group 1 the intensity peaks in the 94Å channel are followed by maxima in the 335 Å channel with a time lag of ~8 min, suggestive of a cooling pattern with an exponential decay. While the 211Å maxima follow those in the 335 Å channel, there is no systematic relation which would indicate a progressive cooling process through the lower temperatures, as has been observed in other investigations. In Group 2 the signals in the 171 and 131Å channels track each other closely, and lag behind the 193Å. In the inter-moss region of the loop the peak temperature and peak emission measure have opposite trends. The hot 94Å brightenings occur in the central part of the loops with maximum temperatures ~7 MK. Subsequently the loops appear to fill with plasma with an emission measure compatible with the 193 Å signal and temperature in the range ~ 1.5-2 MK. Although the exact details of the time evolution are still under investigation, these non static loops show high levels of intermittency in the 94Å signal (please see poster "Intermittent and Scale-Invariant Intensity Fluctuations in Hot Coronal Loops," by Lawrence et al. in this session).
Resumo:
South Africa's southwestern Cape occupies a critical transition zone between Southern Hemisphere temperate (winter) and tropical (summer) moisture-bearing systems. In the recent geological past, it has been proposed that the relative influence of these systems may have changed substantially, but little reliable evidence regarding regional hydroclimates and rainfall seasonality exists to refine or substantiate the understanding of long-term dynamics. In this paper we present a mid-to late Holocene multi-proxy record of environmental change from a rock hyrax midden from Katbakkies Pass, located along the modern boundary between the winter and summer rainfall zones. Derived from stable carbon and nitrogen isotopes, fossil pollen and microcharcoal, these data provide a high resolution record of changes in humidity, and insight into changes in rainfall seasonality. Whereas previous work concluded that the site had generally experienced only subtle environmental change during the Holocene, our records indicate that significant, abrupt changes have occurred in the region over the last 7000 years. Contrary to expectations based on the site's location, these data indicate that the primary determinant of changes in humidity is summer rather than winter rainfall variability, and its influence on drought season intensity and/or length. These findings are consistent with independent records of upwelling along the southern and western coasts, which indicate that periods of increased humidity are related to increased tropical easterly flow. This substantially refines our understanding of the nature of temperate and tropical circulation system dynamics in SW Africa, and how changes in their relative dominance have impacted regional environments during the Holocene.
Resumo:
The emergence of multidrug-resistant pathogens within the clinical environment is presenting a mounting problem in hospitals worldwide. The 'ESKAPE' pathogens (Enterococcusfaecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) have been highlighted as a group of causative organisms in a majority of nosocomial infections, presenting a serious health risk due to widespread antimicrobial resistance. The stagnating pipeline of new antibiotics requires alternative approaches to the control and treatment of nosocomial infections. Atmospheric pressure nonthermal plasma (APNTP) is attracting growing interest as an alternative infection control approach within the clinical setting. This study presents a comprehensive bactericidal assessment of an in-house-designed APNTP jet both against biofilms and planktonic bacteria of the ESKAPE pathogens. Standard plate counts and the XTT metabolic assay were used to evaluate the antibacterial effect of APNTP, with both methods demonstrating comparable eradication times. APNTP exhibited rapid antimicrobial activity against all of the ESKAPE pathogens in the planktonic mode of growth and provided efficient and complete eradication of ESKAPE pathogens in the biofilm mode of growth within 360 s, with the exception of A. baumannii where a >4log reduction in biofilm viability was observed. This demonstrates its effectiveness as a bactericidal treatment against these pathogens and further highlights its potential application in the clinical environment for the control of highly antimicrobial-resistant pathogens.