900 resultados para Artificial intelligence -- Data processing
Resumo:
Ce mémoire est composé de trois articles et présente les résultats de travaux de recherche effectués dans le but d'améliorer les techniques actuelles permettant d'utiliser des données associées à certaines tâches dans le but d'aider à l'entraînement de réseaux de neurones sur une tâche différente. Les deux premiers articles présentent de nouveaux ensembles de données créés pour permettre une meilleure évaluation de ce type de techniques d'apprentissage machine. Le premier article introduit une suite d'ensembles de données pour la tâche de reconnaissance automatique de chiffres écrits à la main. Ces ensembles de données ont été générés à partir d'un ensemble de données déjà existant, MNIST, auquel des nouveaux facteurs de variation ont été ajoutés. Le deuxième article introduit un ensemble de données pour la tâche de reconnaissance automatique d'expressions faciales. Cet ensemble de données est composé d'images de visages qui ont été collectées automatiquement à partir du Web et ensuite étiquetées. Le troisième et dernier article présente deux nouvelles approches, dans le contexte de l'apprentissage multi-tâches, pour tirer avantage de données pour une tâche donnée afin d'améliorer les performances d'un modèle sur une tâche différente. La première approche est une généralisation des neurones Maxout récemment proposées alors que la deuxième consiste en l'application dans un contexte supervisé d'une technique permettant d'inciter des neurones à apprendre des fonctions orthogonales, à l'origine proposée pour utilisation dans un contexte semi-supervisé.
Resumo:
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.
Resumo:
Les récents avancements en sciences cognitives, psychologie et neurosciences, ont démontré que les émotions et les processus cognitifs sont intimement reliés. Ce constat a donné lieu à une nouvelle génération de Systèmes Tutoriels Intelligents (STI) dont la logique d’adaptation repose sur une considération de la dimension émotionnelle et affective de l’apprenant. Ces systèmes, connus sous le nom de Systèmes Tutoriels Émotionnellement Intelligents (STEI), cherchent à se doter des facultés des tuteurs humains dans leurs capacités à détecter, comprendre et s’adapter intuitivement en fonction de l’état émotionnel des apprenants. Toutefois, en dépit du nombre important de travaux portant sur la modélisation émotionnelle, les différents résultats empiriques ont démontré que les STEI actuels n’arrivent pas à avoir un impact significatif sur les performances et les réactions émotionnelles des apprenants. Ces limites sont principalement dues à la complexité du concept émotionnel qui rend sa modélisation difficile et son interprétation ambiguë. Dans cette thèse, nous proposons d’augmenter les STEI des indicateurs d’états mentaux d’engagement et de charge mentale de travail. Ces états mentaux ont l’avantage d’englober à la fois une dimension affective et cognitive. Pour cela, nous allons, dans une première partie, présenter une approche de modélisation de ces indicateurs à partir des données de l’activité cérébrale des apprenants. Dans une seconde partie, nous allons intégrer ces modèles dans un STEI capable d’adapter en temps réel le processus d’apprentissage en fonction de ces indicateurs.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.
Resumo:
The telemetry data processing operation intended for a given mission are pre-defined by an onboard telemetry configuration, mission trajectory and overall telemetry methodology have stabilized lately for ISRO vehicles. The given problem on telemetry data processing is reduced through hierarchical problem reduction whereby the sequencing of operations evolves as the control task and operations on data as the function task. The function task Input, Output and execution criteria are captured into tables which are examined by the control task and then schedules when the function task when the criteria is being met.
Resumo:
Analysis by reduction is a linguistically motivated method for checking correctness of a sentence. It can be modelled by restarting automata. In this paper we propose a method for learning restarting automata which are strictly locally testable (SLT-R-automata). The method is based on the concept of identification in the limit from positive examples only. Also we characterize the class of languages accepted by SLT-R-automata with respect to the Chomsky hierarchy.
Resumo:
Die ubiquitäre Datenverarbeitung ist ein attraktives Forschungsgebiet des vergangenen und aktuellen Jahrzehnts. Es handelt von unaufdringlicher Unterstützung von Menschen in ihren alltäglichen Aufgaben durch Rechner. Diese Unterstützung wird durch die Allgegenwärtigkeit von Rechnern ermöglicht die sich spontan zu verteilten Kommunikationsnetzwerken zusammen finden, um Informationen auszutauschen und zu verarbeiten. Umgebende Intelligenz ist eine Anwendung der ubiquitären Datenverarbeitung und eine strategische Forschungsrichtung der Information Society Technology der Europäischen Union. Das Ziel der umbebenden Intelligenz ist komfortableres und sichereres Leben. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung charakterisieren sich durch Heterogenität der verwendeten Rechner. Diese reichen von Kleinstrechnern, eingebettet in Gegenstände des täglichen Gebrauchs, bis hin zu leistungsfähigen Großrechnern. Die Rechner verbinden sich spontan über kabellose Netzwerktechnologien wie wireless local area networks (WLAN), Bluetooth, oder UMTS. Die Heterogenität verkompliziert die Entwicklung und den Aufbau von verteilten Kommunikationsnetzwerken. Middleware ist eine Software Technologie um Komplexität durch Abstraktion zu einer homogenen Schicht zu reduzieren. Middleware bietet eine einheitliche Sicht auf die durch sie abstrahierten Ressourcen, Funktionalitäten, und Rechner. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung sind durch die spontane Verbindung von Rechnern gekennzeichnet. Klassische Middleware geht davon aus, dass Rechner dauerhaft miteinander in Kommunikationsbeziehungen stehen. Das Konzept der dienstorienterten Architektur ermöglicht die Entwicklung von Middleware die auch spontane Verbindungen zwischen Rechnern erlaubt. Die Funktionalität von Middleware ist dabei durch Dienste realisiert, die unabhängige Software-Einheiten darstellen. Das Wireless World Research Forum beschreibt Dienste die zukünftige Middleware beinhalten sollte. Diese Dienste werden von einer Ausführungsumgebung beherbergt. Jedoch gibt es noch keine Definitionen wie sich eine solche Ausführungsumgebung ausprägen und welchen Funktionsumfang sie haben muss. Diese Arbeit trägt zu Aspekten der Middleware-Entwicklung für verteilte Kommunikationsnetzwerke in der ubiquitären Datenverarbeitung bei. Der Schwerpunkt liegt auf Middleware und Grundlagentechnologien. Die Beiträge liegen als Konzepte und Ideen für die Entwicklung von Middleware vor. Sie decken die Bereiche Dienstfindung, Dienstaktualisierung, sowie Verträge zwischen Diensten ab. Sie sind in einem Rahmenwerk bereit gestellt, welches auf die Entwicklung von Middleware optimiert ist. Dieses Rahmenwerk, Framework for Applications in Mobile Environments (FAME²) genannt, beinhaltet Richtlinien, eine Definition einer Ausführungsumgebung, sowie Unterstützung für verschiedene Zugriffskontrollmechanismen um Middleware vor unerlaubter Benutzung zu schützen. Das Leistungsspektrum der Ausführungsumgebung von FAME² umfasst: • minimale Ressourcenbenutzung, um auch auf Rechnern mit wenigen Ressourcen, wie z.B. Mobiltelefone und Kleinstrechnern, nutzbar zu sein • Unterstützung für die Anpassung von Middleware durch Änderung der enthaltenen Dienste während die Middleware ausgeführt wird • eine offene Schnittstelle um praktisch jede existierende Lösung für das Finden von Diensten zu verwenden • und eine Möglichkeit der Aktualisierung von Diensten zu deren Laufzeit um damit Fehlerbereinigende, optimierende, und anpassende Wartungsarbeiten an Diensten durchführen zu können Eine begleitende Arbeit ist das Extensible Constraint Framework (ECF), welches Design by Contract (DbC) im Rahmen von FAME² nutzbar macht. DbC ist eine Technologie um Verträge zwischen Diensten zu formulieren und damit die Qualität von Software zu erhöhen. ECF erlaubt das aushandeln sowie die Optimierung von solchen Verträgen.
Resumo:
Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.
Resumo:
A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).
Resumo:
While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.