998 resultados para Applied statistics
Resumo:
To meet the increasing demands of the complex inter-organizational processes and the demand for continuous innovation and internationalization, it is evident that new forms of organisation are being adopted, fostering more intensive collaboration processes and sharing of resources, in what can be called collaborative networks (Camarinha-Matos, 2006:03). Information and knowledge are crucial resources in collaborative networks, being their management fundamental processes to optimize. Knowledge organisation and collaboration systems are thus important instruments for the success of collaborative networks of organisations having been researched in the last decade in the areas of computer science, information science, management sciences, terminology and linguistics. Nevertheless, research in this area didn’t give much attention to multilingual contexts of collaboration, which pose specific and challenging problems. It is then clear that access to and representation of knowledge will happen more and more on a multilingual setting which implies the overcoming of difficulties inherent to the presence of multiple languages, through the use of processes like localization of ontologies. Although localization, like other processes that involve multilingualism, is a rather well-developed practice and its methodologies and tools fruitfully employed by the language industry in the development and adaptation of multilingual content, it has not yet been sufficiently explored as an element of support to the development of knowledge representations - in particular ontologies - expressed in more than one language. Multilingual knowledge representation is then an open research area calling for cross-contributions from knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences. This workshop joined researchers interested in multilingual knowledge representation, in a multidisciplinary environment to debate the possibilities of cross-fertilization between knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences applied to contexts where multilingualism continuously creates new and demanding challenges to current knowledge representation methods and techniques. In this workshop six papers dealing with different approaches to multilingual knowledge representation are presented, most of them describing tools, approaches and results obtained in the development of ongoing projects. In the first case, Andrés Domínguez Burgos, Koen Kerremansa and Rita Temmerman present a software module that is part of a workbench for terminological and ontological mining, Termontospider, a wiki crawler that aims at optimally traverse Wikipedia in search of domainspecific texts for extracting terminological and ontological information. The crawler is part of a tool suite for automatically developing multilingual termontological databases, i.e. ontologicallyunderpinned multilingual terminological databases. In this paper the authors describe the basic principles behind the crawler and summarized the research setting in which the tool is currently tested. In the second paper, Fumiko Kano presents a work comparing four feature-based similarity measures derived from cognitive sciences. The purpose of the comparative analysis presented by the author is to verify the potentially most effective model that can be applied for mapping independent ontologies in a culturally influenced domain. For that, datasets based on standardized pre-defined feature dimensions and values, which are obtainable from the UNESCO Institute for Statistics (UIS) have been used for the comparative analysis of the similarity measures. The purpose of the comparison is to verify the similarity measures based on the objectively developed datasets. According to the author the results demonstrate that the Bayesian Model of Generalization provides for the most effective cognitive model for identifying the most similar corresponding concepts existing for a targeted socio-cultural community. In another presentation, Thierry Declerck, Hans-Ulrich Krieger and Dagmar Gromann present an ongoing work and propose an approach to automatic extraction of information from multilingual financial Web resources, to provide candidate terms for building ontology elements or instances of ontology concepts. The authors present a complementary approach to the direct localization/translation of ontology labels, by acquiring terminologies through the access and harvesting of multilingual Web presences of structured information providers in the field of finance, leading to both the detection of candidate terms in various multilingual sources in the financial domain that can be used not only as labels of ontology classes and properties but also for the possible generation of (multilingual) domain ontologies themselves. In the next paper, Manuel Silva, António Lucas Soares and Rute Costa claim that despite the availability of tools, resources and techniques aimed at the construction of ontological artifacts, developing a shared conceptualization of a given reality still raises questions about the principles and methods that support the initial phases of conceptualization. These questions become, according to the authors, more complex when the conceptualization occurs in a multilingual setting. To tackle these issues the authors present a collaborative platform – conceptME - where terminological and knowledge representation processes support domain experts throughout a conceptualization framework, allowing the inclusion of multilingual data as a way to promote knowledge sharing and enhance conceptualization and support a multilingual ontology specification. In another presentation Frieda Steurs and Hendrik J. Kockaert present us TermWise, a large project dealing with legal terminology and phraseology for the Belgian public services, i.e. the translation office of the ministry of justice, a project which aims at developing an advanced tool including expert knowledge in the algorithms that extract specialized language from textual data (legal documents) and whose outcome is a knowledge database including Dutch/French equivalents for legal concepts, enriched with the phraseology related to the terms under discussion. Finally, Deborah Grbac, Luca Losito, Andrea Sada and Paolo Sirito report on the preliminary results of a pilot project currently ongoing at UCSC Central Library, where they propose to adapt to subject librarians, employed in large and multilingual Academic Institutions, the model used by translators working within European Union Institutions. The authors are using User Experience (UX) Analysis in order to provide subject librarians with a visual support, by means of “ontology tables” depicting conceptual linking and connections of words with concepts presented according to their semantic and linguistic meaning. The organizers hope that the selection of papers presented here will be of interest to a broad audience, and will be a starting point for further discussion and cooperation.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results.
Resumo:
Comunicação apresentada no 8º Congresso Nacional de Administração Pública - Desafios e Soluções, em Carcavelos de 21 a 22 de Novembro de 2011.
Resumo:
The alkaline soluble Trypanosoma cruzi epimastigote antigen (ASEA) was assessed in dot-ELISA for the diagnosis of Chagas' disease. Serum samples (355) from chagasic and non-chagasic patients were studied, and IgG antibodies to ASEA were found in all patients with chronic Chagas' disease. In non-chagasic patients 95.6% were negative, except for those with leishmaniasis (visceral and mucocutaneous), and some patients from control group reacted in low titers. The data indicate that dot-ELISA using ASEA is suitable for seroepidemiologic surveys to be employed in endemic areas for Chagas' disease.
Resumo:
This project aims to study the implementation of Lean principles and tools in several levels of logistics, from internal logistics to interface with distribution center and suppliers, in an industrial plant. The main focus of all efforts is to create the conditions to approach the continuous flow scenario in the manufacturing processes. The subject of improvement actions is a company whose core activity is car seat production, more specifically the car seat cover production and assembly. This focuses the assembly process, which requires the usage of a considerable variety of components and therefore is an important obstacle to the implementation of continuous flow. The most salient issues are related with inefficient interaction between sections and late supply of components in assembly lines, forcing the operator to abandon his work station and leading to production interruption. As an operational methodology, actions from Lean philosophy and optimization were implemented according to project management principles.
Resumo:
The importance of wind power energy for energy and environmental policies has been growing in past recent years. However, because of its random nature over time, the wind generation cannot be reliable dispatched and perfectly forecasted, becoming a challenge when integrating this production in power systems. In addition the wind energy has to cope with the diversity of production resulting from alternative wind power profiles located in different regions. In 2012, Portugal presented a cumulative installed capacity distributed over 223 wind farms [1]. In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Performance appraisal increasingly assumes a more important role in any organizational environment. In the trucking industry, drivers are the company's image and for this reason it is important to develop and increase their performance and commitment to the company's goals. This paper aims to create a performance appraisal model for trucking drivers, based on a multi-criteria decision aid methodology. The PROMETHEE and MMASSI methodologies were adapted using the criteria used for performance appraisal by the trucking company studied. The appraisal involved all the truck drivers, their supervisors and the company's Managing Director. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used. The results are to be used as a decision-making tool to allocate drivers to the domestic haul service.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.