795 resultados para Anura amphibian
Resumo:
A riqueza e a diversidade de anfíbios anuros de serapilheira em áreas de floresta e de pastagem foram estudadas em Rondônia. A eficiência da utilização de armadilhas de interceptação e queda foi analisada. As armadilhas foram instaladas em três ambientes distintos: interior de floresta, distante de ambientes aquáticos permanentes; interior de floresta, a cerca de 100 metros de rio; área de pastagem, distante de ambientes aquáticos permanentes. Foram capturados 1.324 espécimes pertencentes a 27 espécies, distribuídas em nove famílias: Aromobatidae (1 espécie), Brachycephalidae (2), Bufonidae (4), Cycloramphidae (1), Dendrobatidae (1), Hylidae (5), Leiuperidae (1), Leptodactylidae (7) e Microhylidae (5). O emprego de armadilhas de interceptação e queda permitiu registrar 57% das espécies conhecidas para essa localidade, sendo particularmente eficiente para a captura de anuros de hábitos terrícolas e fossoriais. Foram capturados menos indivíduos nos três meses mais secos e houve maior diversidade durante a estação chuvosa. Maior riqueza e diversidade foram registradas nos ambientes florestados, em relação à pastagem, observando-se decréscimo de espécies com o desmatamento. A conversão da floresta em pastagens ocasiona modificações no ambiente (diminuição de locais para reprodução, diminuição da disponibilidade de alimento, perda da serapilheira, compactação do solo, alterações microclimáticas, aumento da abundância de espécies de áreas abertas, etc.) criando condições desfavoráveis para a sobrevivência de algumas espécies.
Resumo:
The native species of amphibians and reptiles of Uruguay were categorized according to the IUCN Red List criteria. Out of 47 amphibian species, seven are listed as Critically Endangered (CR), five as Endangered (EN), one as Vulnerable (VU), three as Near Threatened (NT), and two as Data Deficient (DD); the remaining species are considered to be Least Concern (LC). Among the 64 species of reptiles evaluated, one is listed as Critically Endangered (CR), seven as Endangered (EN), two as Vulnerable (VU), one as Near Threatened (NT) and seven as Data Deficient (DD); the rest are considered to be Least Concern (LC). The use of these results as an additional criterion in the definition of protected areas in Uruguay will contribute towards the conservation of the aforementioned threatened species and their associated ecosystems.
Resumo:
Reproductive modes and size-fecundity relationships are described for anurans from Picinguaba, a region of Atlantic rainforest on the northern coast of the state of São Paulo, Brazil. We observed 13 reproductive modes, confirming a high diversity of modes in the Atlantic rainforest. This diversity of reproductive modes reflects the successful use of diversified and humid microhabitats by anurans in this biome. We measured the snout-vent length of 715 specimens of 40 species of anurans. The size-fecundity relationship of 12 species was analyzed. Female snout-vent lengths explained between 57% and 81% of clutch size variation. Anurans with aquatic modes laid more eggs than those with terrestrial or arboreal modes. Larger eggs were deposited by species with specialized reproductive modes.
Resumo:
A diversidade biológica e os processos ecológicos do bioma Cerrado ainda são pouco conhecidos. Neste estudo são apresentadas informações acerca da estrutura da anurofauna do município de Barro Alto, estado de Goiás (Brasil Central). Cinco corpos d'água foram amostrados entre os anos de 2007 a 2010 (outubro-março), três deles associados à área florestal e dois associados à área aberta. Registraram-se 39 espécies de anuros, caracterizados como especialistas de hábitat aberto, florestal ou generalistas. A curva de acumulação de espécies apresentou a formação de uma assíntota, evidenciando que as técnicas e esforço de amostragens foram adequados para se estimar a riqueza de espécies de anuros na região. A riqueza foi influenciada pela umidade e temperatura, já que a maioria das espécies se reproduz na estação quente e chuvosa. Diferenças significativas na composição de espécies entre os sítios reprodutivos de áreas florestais e abertas foram registradas. A fauna de anuros no Cerrado parece ser constituída a partir da heterogeneidade horizontal dos hábitats no espaço. Assim, hábitats contrastantes no espaço são importantes para a manutenção da riqueza da anurofauna, e portanto, relevantes em termos conservacionistas.
Resumo:
ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.
Resumo:
EA (sheep erythrocytes carrying rabbit antibody) are lysed by toad complement under optimal conditions which include a low concentration of cells (1.54 x 10*8/ml), a low temperature of incubation (30°C) and the same amounts of Ca++ and Mg++ as required for the titration of guinea-pig complement. Kinetic studies of the role of cations mentioned above in immune lysis by toad C have disclosed a fundamental difference as compared to guinea-pig C. In a limited complement system, the lysis by amphibian C is completely blocked by EDTA, even when the chelating agent is added as late as 15 minutes after zero-time. Inhibition by EGTA is only partial and the findings suggest that Mg++ is required not only at the beginning, but also at late stages of the lytic process. It has been speculated that the activation of amphibian complement proceeds mainly by the alternative pathway.
Resumo:
Pond-breeding amphibians are affected by site-specific factors and regional and landscape-scale patterns of land use. Recent anthropogenic landscape modifications (drainage, agriculture intensification, larger road networks, and increased traffic) affect species by reducing the suitable habitat area and fragmenting remaining populations. Using a robust concentric approach based on permutation tests, we evaluated the impact of recent landscape changes on the presence of the endangered European tree frog (Hyla arborea.) in wetlands. We analyzed the frequency of 1 traffic and 14 land-use indices at 20 circular ranges (from 100-m up to 2-km radii) around 76 ponds identified in western Switzerland. Urban areas and road surfaces had a strong adverse effect on tree frog presence even at relatively great distances (from 100 m up to 1 km). When traffic measurements were considered instead of road surfaces, the effect increased, suggesting a negative impact due to a vehicle-induced effect. Altogether, our results indicate that urbanization and traffic must be taken into account when pond creation is an option in conservation management plans, as is the case for the European tree frog in western Switzerland. We conclude that our easy-to-use and robust concentric method of analysis can successfully assist managers in identifying potential sites for pond creation, where probability of the presence of tree frogs is maximized.
Resumo:
Habitat destruction and fragmentation are known to strongly affect dispersal by altering the quality of the environment between populations. As a consequence, lower landscape connectivity is expected to enhance extinction risks through a decrease in gene flow and the resulting negative effects of genetic drift, accumulation of deleterious mutations and inbreeding depression. Such phenomena are particularly harmful for amphibian species, characterized by disjunct breeding habitats. The dispersal behaviour of amphibians being poorly understood, it is crucial to develop new tools, allowing us to determine the influence of landscape connectivity on the persistence of populations. In this study, we developed a new landscape genetics approach that aims at identifying land-uses affecting genetic differentiation, without a priori assumptions about associated ecological costs. We surveyed genetic variation at seven microsatellite loci for 19 Alpine newt (Mesotriton alpestris) populations in western Switzerland. Using strips of varying widths that define a dispersal corridor between pairs of populations, we were able to identify land-uses that act as dispersal barriers (i.e. urban areas) and corridors (i.e. forests). Our results suggest that habitat destruction and landscape fragmentation might in the near future affect common species such as M. alpestris. In addition, by identifying relevant landscape variables influencing population structure without unrealistic assumptions about dispersal, our method offers a simple and flexible tool of investigation as an alternative to least-cost models and other approaches.
Resumo:
ABSTRACT: BACKGROUND: Climatic oscillations throughout the Quaternary had profound effects on temperate biodiversity, but the extent of Quaternary climate change was more severe in temperate regions of the northern hemisphere than in the southern hemisphere. We sought to determine whether this geographic disparity differentially influenced the timing of intraspecific diversification events within ectothermic and endothermic vertebrate species. Using published phylogenetic hypotheses, we gathered data on the oldest intraspecific diversification event within mammal, bird, freshwater fish, amphibian, and reptile species from temperate-zone areas. We then tested whether the timing of diversification events differed between hemispheres. RESULTS: Our analyses provide strong evidence that vertebrates from temperate regions of the northern hemisphere are younger than those from the southern hemisphere. However, we find little evidence to suggest that this relationship differs between endotherms versus ectotherms, or that it varies widely across the five classes of vertebrates that we considered. In addition, we find that on average, endothermic species are much younger than ectothermic species. CONCLUSION: Our findings suggest that geographic variation in the magnitude of climatic oscillations during the Quaternary led to substantial disparity in the timing of intraspecific diversification events between northern and southern hemisphere vertebrates, and that the magnitude of this divergence is largely congruent across vertebrate taxa.
Resumo:
Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4-7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.
Resumo:
We characterize divergence times, intraspecific diversity and distributions for recently recognized lineages within the Hyla arborea species group, based on mitochondrial and nuclear sequences from 160 localities spanning its whole distribution. Lineages of H. arborea, H. orientalis, H. molleri have at least Pliocene age, supporting species level divergence. The genetically uniform Iberian H. molleri, although largely isolated by the Pyrenees, is parapatric to H. arborea, with evidence for successful hybridization in a small Aquitanian corridor (southwestern France), where the distribution also overlaps with H. meridionalis. The genetically uniform H. arborea, spread from Crete to Brittany, exhibits molecular signatures of a postglacial range expansion. It meets different mtDNA clades of H. orientalis in NE-Greece, along the Carpathians, and in Poland along the Vistula River (there including hybridization). The East-European H. orientalis is strongly structured genetically. Five geographic mitochondrial clades are recognized, with a molecular signature of postglacial range expansions for the clade that reached the most northern latitudes. Hybridization with H. savignyi is suggested in southwestern Turkey. Thus, cryptic diversity in these Pliocene Hyla lineages covers three extremes: a genetically poor, quasi-Iberian endemic (H. molleri), a more uniform species distributed from the Balkans to Western Europe (H. arborea), and a well-structured Asia Minor-Eastern European species (H. orientalis).
Resumo:
Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3-1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5-1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.
Resumo:
We investigated sex-specific recombination rates in Hyla arborea, a species with nascent sex chromosomes and male heterogamety. Twenty microsatellites were clustered into six linkage groups, all showing suppressed or very low recombination in males. Seven markers were sex linked, none of them showing any sign of recombination in males (r=0.00 versus 0.43 on average in females). This opposes classical models of sex chromosome evolution, which envision an initially small differential segment that progressively expands as structural changes accumulate on the Y chromosome. For autosomes, maps were more than 14 times longer in females than in males, which seems the highest ratio documented so far in vertebrates. These results support the pleiotropic model of Haldane and Huxley, according to which recombination is reduced in the heterogametic sex by general modifiers that affect recombination on the whole genome.
Resumo:
In sharp contrast with birds and mammals, sex-determination systems in ectothermic vertebrates are often highly dynamic and sometimes multifactorial. Both environmental and genetic effects have been documented in common frogs (Rana temporaria). One genetic linkage group, mapping to the largest pair of chromosomes and harbouring the candidate sex-determining gene Dmrt1, associates with sex in several populations throughout Europe, but association varies both within and among populations. Here, we show that sex association at this linkage group differs among populations along a 1500-km transect across Sweden. Genetic differentiation between sexes is strongest (FST = 0.152) in a northern-boreal population, where male-specific alleles and heterozygote excesses (FIS = -0.418 in males, +0.025 in females) testify to a male-heterogametic system and lack of X-Y recombination. In the southernmost population (nemoral climate), in contrast, sexes share the same alleles at the same frequencies (FST = 0.007 between sexes), suggesting unrestricted recombination. Other populations show intermediate levels of sex differentiation, with males falling in two categories: some cluster with females, while others display male-specific Y haplotypes. This polymorphism may result from differences between populations in the patterns of X-Y recombination, co-option of an alternative sex-chromosome pair, or a mixed sex-determination system where maleness is controlled either by genes or by environment depending on populations or families. We propose approaches to test among these alternative models, to disentangle the effects of climate and phylogeography on the latitudinal trend, and to sort out how this polymorphism relates to the 'sexual races' described in common frogs in the 1930s.