900 resultados para Antagonistic yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Schizosaccharomyces pombe the MBF (DSC1) complex mediates transcriptional activation at Start and is composed of a common subunit called Cdc10 in combination with two alternative DNA-binding partners, Res1 and Res2. It has been suggested that a high-activity MBF complex (at G1/S) is switched to a low-activity complex (in G2) by the incorporation of the negative regulatory subunit Res2. We have analyzed MBF protein–protein interactions and find that both Res proteins are associated with Cdc10 throughout the cell cycle, arguing against this model. Furthermore we demonstrate that Res2 is capable of interacting with a mutant form of Cdc10 that has high transcriptional activity. It has been shown previously that both Res proteins are required for periodic cell cycle–regulated transcription. Therefore a series of Res1–Res2 hybrid molecules was used to determine the domains that are specifically required to regulate periodic transcription. In Res2 the nature of the C-terminal region is critical, and in both Res1 and Res2, a domain overlapping the N-terminal ankyrin repeat and a recently identified activation domain is important for mediating cell cycle–regulated transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posttranslational translocation of proteins across the endoplasmic reticulum (ER) membrane in yeast requires ATP hydrolysis and the action of hsc70s (DnaK homologues) and DnaJ homologues in both the cytosol and ER lumen. Although the cytosolic hsc70 (Ssa1p) and the ER lumenal hsc70 (BiP) are homologous, they cannot substitute for one another, possibly because they interact with specific DnaJ homologues on each side of the ER membrane. To investigate this possibility, we purified Ssa1p, BiP, Ydj1p (a cytosolic DnaJ homologue), and a GST–63Jp fusion protein containing the lumenal DnaJ region of Sec63p. We observed that BiP, but not Ssa1p, is able to associate with GST–63Jp and that Ydj1p stimulates the ATPase activity of Ssa1p up to 10-fold but increases the ATPase activity of BiP by <2-fold. In addition, Ydj1p and ATP trigger the release of an unfolded polypeptide from Ssa1p but not from BiP. To understand further how BiP drives protein translocation, we purified four dominant lethal mutants of BiP. We discovered that each mutant is defective for ATP hydrolysis, fails to undergo an ATP-dependent conformational change, and cannot interact with GST–63Jp. Measurements of protein translocation into reconstituted proteoliposomes indicate that the mutants inhibit translocation even in the presence of wild-type BiP. We conclude that a conformation- and ATP-dependent interaction of BiP with the J domain of Sec63p is essential for protein translocation and that the specificity of hsc70 action is dictated by their DnaJ partners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized two Saccharomyces cerevisiae proteins, Sro9p and Slf1p, which contain a highly conserved motif found in all known La proteins. Originally described as an autoantigen in patients with rheumatic disease, the La protein binds to newly synthesized RNA polymerase III transcripts. In yeast, the La protein homologue Lhp1p is required for the normal pathway of tRNA maturation and also stabilizes newly synthesized U6 RNA. We show that deletions in both SRO9 and SLF1 are not synthetically lethal with a deletion in LHP1, indicating that the three proteins do not function in a single essential process. Indirect immunofluorescence microscopy reveals that although Lhp1p is primarily localized to the nucleus, Sro9p is cytoplasmic. We demonstrate that Sro9p and Slf1p are RNA-binding proteins that associate preferentially with translating ribosomes. Consistent with a role in translation, strains lacking either Sro9p or Slf1p are less sensitive than wild-type strains to certain protein synthesis inhibitors. Thus, Sro9p and Slf1p define a new and possibly evolutionarily conserved class of La motif-containing proteins that may function in the cytoplasm to modulate mRNA translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sterols are major components of the plasma membrane, but their functions in this membrane are not well understood. We isolated a mutant defective in the internalization step of endocytosis in a gene (ERG2) encoding a C-8 sterol isomerase that acts in the late part of the ergosterol biosynthetic pathway. In the absence of Erg2p, yeast cells accumulate sterols structurally different from ergosterol, which is the major sterol in wild-type yeast. To investigate the structural requirements of ergosterol for endocytosis in more detail, several erg mutants (erg2Δ, erg6Δ, and erg2Δerg6Δ) were made. Analysis of fluid phase and receptor-mediated endocytosis indicates that changes in the sterol composition lead to a defect in the internalization step. Vesicle formation and fusion along the secretory pathway were not strongly affected in the ergΔ mutants. The severity of the endocytic defect correlates with changes in sterol structure and with the abundance of specific sterols in the ergΔ mutants. Desaturation of the B ring of the sterol molecules is important for the internalization step. A single desaturation at C-8,9 was not sufficient to support internalization at 37°C whereas two double bonds, either at C-5,6 and C-7,8 or at C-5,6 and C-8,9, allowed internalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical step in the degradation of many eukaryotic mRNAs is a decapping reaction that exposes the transcript to 5′ to 3′ exonucleolytic degradation. The dual role of the cap structure as a target of mRNA degradation and as the site of assembly of translation initiation factors has led to the hypothesis that the rate of decapping would be specified by the status of the cap binding complex. This model makes the prediction that signals that promote mRNA decapping should also alter translation. To test this hypothesis, we examined the decapping triggered by premature termination codons to determine whether there is a down-regulation of translation when mRNAs were recognized as “nonsense containing.” We constructed an mRNA containing a premature stop codon in which we could measure the levels of both the mRNA and the polypeptide encoded upstream of the premature stop codon. Using this system, we analyzed the effects of premature stop codons on the levels of protein being produced per mRNA. In addition, by using alterations either in cis or in trans that inactivate different steps in the recognition and degradation of nonsense-containing mRNAs, we demonstrated that the recognition of a nonsense codon led to a decrease in the translational efficiency of the mRNA. These observations argue that the signal from a premature termination codon impinges on the translation machinery and suggest that decapping is a consequence of the change in translational status of the mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein transport to the lysosome-like vacuole in yeast is mediated by multiple pathways, including the biosynthetic routes for vacuolar hydrolases, the endocytic pathway, and autophagy. Among the more than 40 genes required for vacuolar protein sorting (VPS) in Saccharomyces cerevisiae, mutations in the four class C VPS genes result in the most severe vacuolar protein sorting and morphology defects. Herein, we provide complementary genetic and biochemical evidence that the class C VPS gene products (Vps18p, Vps11p, Vps16p, and Vps33p) physically and functionally interact to mediate a late step in protein transport to the vacuole. Chemical cross-linking experiments demonstrated that Vps11p and Vps18p, which both contain RING finger zinc-binding domains, are components of a hetero-oligomeric protein complex that includes Vps16p and the Sec1p homologue Vps33p. The class C Vps protein complex colocalized with vacuolar membranes and a distinct dense membrane fraction. Analysis of cells harboring a temperature-conditional vps18 allele (vps18tsf) indicated that Vps18p function is required for the biosynthetic, endocytic, and autophagic protein transport pathways to the vacuole. In addition, vps18tsf cells accumulated multivesicular bodies, autophagosomes, and other membrane compartments that appear to represent blocked transport intermediates. Overproduction of either Vps16p or the vacuolar syntaxin homologue Vam3p suppressed defects associated with vps18tsf mutant cells, indicating that the class C Vps proteins and Vam3p may functionally interact. Thus we propose that the class C Vps proteins are components of a hetero-oligomeric protein complex that mediates the delivery of multiple transport intermediates to the vacuole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trithorax gene family contains members implicated in the control of transcription, development, chromosome structure, and human leukemia. A feature shared by some family members, and by other proteins that function in chromatin-mediated transcriptional regulation, is the presence of a 130- to 140-amino acid motif dubbed the SET or Tromo domain. Here we present analysis of SET1, a yeast member of the trithorax gene family that was identified by sequence inspection to encode a 1080-amino acid protein with a C-terminal SET domain. In addition to its SET domain, which is 40–50% identical to those previously characterized, SET1 also shares dispersed but significant similarity to Drosophila and human trithorax homologues. To understand SET1 function(s), we created a null mutant. Mutant strains, although viable, are defective in transcriptional silencing of the silent mating-type loci and telomeres. The telomeric silencing defect is rescued not only by full-length episomal SET1 but also by the conserved SET domain of SET1. set1 mutant strains display other phenotypes including morphological abnormalities, stationary phase defects, and growth and sporulation defects. Candidate genes that may interact with SET1 include those with functions in transcription, growth, and cell cycle control. These data suggest that yeast SET1, like its SET domain counterparts in other organisms, functions in diverse biological processes including transcription and chromatin structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1988 McCusker and Haber generated a series of mutants which are resistant to the minimum inhibitory concentration of the protein synthesis inhibitor cycloheximide. These cycloheximide-resistant, temperature-sensitive (crl) mutants, in addition, exhibited other pleiotropic phenotypes, e.g., incorrect response to starvation, hypersensitivity against amino acid analogues, and other protein synthesis inhibitors. Temperature sensitivity of one of these mutants, crl3–2, had been found to be suppressed by a mutation, SCL1–1, which resided in an α-type subunit of the 20S proteasome. We cloned the CRL3 gene by complementation and found CRL3 to be identical to the SUG1/CIM3 gene coding for a subunit of the 19S cap complex of the 26S proteasome. Another mutation, crl21, revealed to be allelic with the 20S proteasomal gene PRE3. crl3–2 and crl21 mutant cells show significant defects in proteasome-dependent proteolysis, whereas the SCL1–1 suppressor mutation causes partial restoration of crl3–2-induced proteolytic defects. Notably, cycloheximide resistance was also detected for other proteolytically deficient proteasome mutants (pre1–1, pre2–1, pre3–1, pre4–1). Moreover, proteasomal genes were found within genomic sequences of 9 of 13 chromosomal loci to which crl mutations had been mapped. We therefore assume that most if not all crl mutations reside in the proteasome and that phenotypes found are a result of defective protein degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously uncharacterized yeast gene (YER016w) that we have named BIM1 (binding to microtubules) was obtained from a two-hybrid screen of a yeast cDNA library using as bait the entire coding sequence of TUB1 (encoding α-tubulin). Deletion of BIM1 results in a strong bilateral karyogamy defect, hypersensitivity to benomyl, and aberrant spindle behavior, all phenotypes associated with mutations affecting microtubules in yeast, and inviability at extreme temperatures (i.e., ≥37°C or ≤14°C). Overexpression of BIM1 in wild-type cells is lethal. A fusion of Bim1p with green fluorescent protein that complements the bim1Δ phenotypes allows visualization in vivo of both intranuclear spindles and extranuclear microtubules in otherwise wild-type cells. A bim1 deletion displays synthetic lethality with deletion alleles of bik1, num1, and bub3 as well as a limited subset of tub1 conditional-lethal alleles. A systematic study of 51 tub1 alleles suggests a correlation between specific failure to interact with Bim1p in the two-hybrid assay and synthetic lethality with the bim1Δ allele. The sequence of BIM1 shows substantial similarity to sequences from organisms across the evolutionary spectrum. One of the human homologues, EB1, has been reported previously as binding APC, itself a microtubule-binding protein and the product of a gene implicated in the etiology of human colon cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arp2/3 complex is an essential component of the yeast actin cytoskeleton that localizes to cortical actin patches. We have isolated and characterized a temperature-sensitive mutant of Schizosaccharomyces pombe arp2 that displays a defect in cortical actin patch distribution. The arp2+ gene encodes an essential actin-related protein that colocalizes with actin at the cortical actin patch. Sucrose gradient analysis of the Arp2/3 complex in the arp2-1 mutant indicated that the Arp2p and Arc18p subunits are specifically lost from the complex at restrictive temperature. These results are consistent with immunolocalization studies of the mutant that show that Arp2-1p is diffusely localized in the cytoplasm at restrictive temperature. Interestingly, Arp3p remains localized to the cortical actin patch under the same restrictive conditions, leading to the hypothesis that loss of Arp2p from the actin patch affects patch motility but does not severely compromise its architecture. Analysis of the mutant Arp2 protein demonstrated defects in ATP and Arp3p binding, suggesting a possible model for disruption of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proper localization of resident membrane proteins to the trans-Golgi network (TGN) involves mechanisms for both TGN retention and retrieval from post-TGN compartments. In this study we report identification of a new gene, GRD20, involved in protein sorting in the TGN/endosomal system of Saccharomyces cerevisiae. A strain carrying a transposon insertion allele of GRD20 exhibited rapid vacuolar degradation of the resident TGN endoprotease Kex2p and aberrantly secreted ∼50% of the soluble vacuolar hydrolase carboxypeptidase Y. The Kex2p mislocalization and carboxypeptidase Y missorting phenotypes were exhibited rapidly after loss of Grd20p function in grd20 temperature-sensitive mutant strains, indicating that Grd20p plays a direct role in these processes. Surprisingly, little if any vacuolar degradation was observed for the TGN membrane proteins A-ALP and Vps10p, underscoring a difference in trafficking patterns for these proteins compared with that of Kex2p. A grd20 null mutant strain exhibited extremely slow growth and a defect in polarization of the actin cytoskeleton, and these two phenotypes were invariably linked in a collection of randomly mutagenized grd20 alleles. GRD20 encodes a hydrophilic protein that partially associates with the TGN. The discovery of GRD20 suggests a link between the cytoskeleton and function of the yeast TGN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mutation in the Schizosaccharomyces pombe sid4+ (septation initiation defective) gene was isolated in a screen for mutants defective in cytokinesis. We have cloned sid4+ and have found that sid4+ encodes a previously unknown 76.4-kDa protein that localizes to the spindle pole body (SPB) throughout the cell cycle. Sid4p is required for SPB localization of key regulators of septation initiation, including the GTPase Spg1p, the protein kinase Cdc7p, and the GTPase-activating protein Byr4p. An N-terminally truncated Sid4p mutant does not localize to SPBs and when overproduced acts as a dominant-negative mutant by titrating endogenous Sid4p and Spg1p from the SPB. Conversely, the Sid4p N-terminal 153 amino acids are sufficient for SPB localization. Biochemical studies demonstrate that Sid4p interacts with itself, and yeast two-hybrid analysis shows that its self-interaction domain lies within the C-terminal half of the protein. Our data indicate that Sid4p SPB localization is a prerequisite for the execution of the Spg1p signaling cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.