989 resultados para Amplified fragment length polymorphism (AFLP)
Resumo:
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Resumo:
In this study, transplacental transmission of Neospora caninum in bitches at different stages of pregnancy was evaluated. Three bitches were inoculated in the 3rd week and three in the 6th week of gestation with 10(8) tachyzoites of N. caninum (Nc-1 strain). All the infected bitches and at least one of their offspring presented anti-N. caninum antibodies according to the indirect fluorescent antibody test (IFAT > 400). The pups and their mothers were sacrificed and tissues from the central nervous system (CNS), popliteal lymph nodes, skeletal muscle, brain, lungs, heart and liver were analyzed for the presence of N. caninum using the nested polymerase chain reaction (nested PCR), restriction fragment length polymorphism (RFLP) and immunohistochemistry (IHC). The parasite was found in the pups in lymph node, CNS, heart and liver tissues using nested PCR. There was no difference in perinatal mortality between the offspring from bitches infected in the 3rd week of gestation (60%) and in the 6th week (53.8%).
Resumo:
Introduction. Cardiovascular disease (CVD) represents the main cause of morbidity and mortality in kidney recipients. This study was undertaken to assess the impact of functional polymorphisms located in cytokine and apoptosis genes on CVD after kidney transplantation. Cytokine polymorphisms, generally located in gene regulatory regions, are associated with high and low cytokine production and are likely to modulate the magnitude of inflammatory responses following transplantation, depending on the balance between the levels of pro-inflammatory and antiinflammatory cytokines. The role of apoptosis in atherosclerosis has not been completely elucidated, and here we explored the hypothesis that the heterogeneity in cardiovascular risk in kidney recipients may also be linked to functional polymorphisms involved in apoptosis induction. Purpose. In the search for relevant genetic markers of predisposition to CVD after renal transplant, the present investigation was undertaken to identify the clinical impact of polymorphisms of cytokines TNF-α, TGF-β, IL-10, IL-6, IFN-γ and IL-8 and of apoptosis genes Fas and Caspase 9 in a population of kidney transplant recipients. Materials and methods. The study involved 167 patients who received cadaveric kidney transplantation at our centre between 1997 and 2005 (minimum follow-up of 12 months); 35 of them had experienced cardiovascular events (CVD group) and 132 had no cardiovascular complications (non-CVD group). Genotyping was performed using RFLP (Restriction Fragment Length Polymorphism) for RFLP per IL-8/T-251A, Fas/G-670A e Casp9/R221Q polymorphism and SSP (Sequence Specific Primer) for TNF-α/G-308A, TGF-β/L10P, TGF-β/R25P, IL-10/G-1082A, IL- 10/C-819T, IL-10/C-592A, IL-6/G-174C, IFN-γ/T+874A polymorphisms.Results. We found a significant difference in TNF-α and IL-10 genotype frequencies between the patients who had suffered cardiovascular events and those with no CVD history. The high producer genotype for proflogistic cytokine TNF-α appeared to have a significantly superior prevalence in the CVD group compared to the non-CVD group (40.0% vs 21.2%) and it resulted in a 2.4-fold increased cardiovascular risk (OR=2.361; p=0.0289). On the other hand, the high producer genotype for the antiinflammatory cytokine IL-10 was found in 2.8% of the CVD group and in 16.7% of non-CVD group; logistic regression showed a 0.3-fold reduced risk of CVD associated with genetically determined high IL-10 production (OR=0.278; p<0.0001). The other polymorphisms did not prove to have any impact on CVD. Conclusions. TNF-α and IL-10 gene polymorphisms might represent cardiovascular risk markers in renal transplant recipients.
Resumo:
Staphylococcus aureus and Staphylococcus epidermidis are leading pathogens of implant-related infections. This study aimed at investigating the diverse distribution of different bacterial pathogen factors in most prevalent S. aureus and S. epidermidis strain types causing orthopaedic implant infections. In this study the presence both of the ica genes, encoding for biofilm exopolysaccharide production, and the insertion sequence IS256, a mobile element frequently associated to transposons, was investigated in relationship with the prevalence of antibiotic resistance among Staphylococcus epidermidis strains. The investigation was conducted on 70 clinical isolates derived from orthopaedic implant infections. Among the clinical isolates investigated a dramatic high level of association was found between the presence of ica genes as well as of IS256 and multiple resistance to all the antibiotics tested. Noteworthy, a striking full association between the presence of IS256 and resistance to gentamicin was found, being none of the IS256-negative strain resistant to this antibiotic. This association is probably because of the link of the corresponding aminoglycoside-resistance genes, and IS256, often co-existing within the same staphylococcal transposon. Moreover we investigated the prevalence of aac(6’)-Ie-aph(2’’), aph (3’) IIIa, and ant(4’) genes, encoding for the three forms of aminoglycoside-modifying enzymes (AME), responsible for resistance to aminoglycoside antibiotics. All isolates were characterized by automated ribotyping, so that the presence of antibiotic resistance determinants was investigated in strains exhibiting different ribopatterns. Interestingly, combinations of coexisting AME genes appeared to be typical of specific ribopatterns. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes, accessory gene regulatory (agr) polymorphisms and toxins. For many ribogroups, characteristic tandem genes arrangements could be identified. Surprisingly, the isolates of the most prevalent cluster, enlisting 27 isolates, were susceptible to almost all antibiotics and never possessed the lukD/lukE gene, thus suggesting the role of factors other than antibiotic resistance and the here investigated toxins in driving the major epidemic clone to the larger success. Afterwards, .in the predominant S. aureus cluster, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. Moreover a PCR screening for the ebpS gene, conducted on over two hundred S. aureus clinical isolates from implant related infections revealed the detection of six strains exhibiting an altered amplicon size, shorter than expected. In order to elucidate the sequence changes present in these gene variants, the trait comprised between the primers was analyzed in all six isolates bearing the modification and in four isolates exhibiting the regular amplicon size. From nucleotide translation, the corresponding encoded protein was found to lack an entire peptide segment of 60 amino acids. These variants, missing an entire hydrophobic region, could actually facilitate current structural studies, helping to assess whether the absent domain is strictly necessary for a functional adhesin conformation and its contribution to the topology of the protein. This study suggests that epidemic clones appear to pursue different survival strategies, where adhesins, when present, exhibit diverse importance as virulence factors. A practical message arising from the present study is that strategies for the prevention and treatment of implant orthopaedic infections should target adhesins conjointly present in epidemic clones. Furthermore, the choice of reference strains for testing the anti-infective properties of biomaterials should focus on a selection of the most prevalent clones as they exhibit distinct profiles of adhesins.
Resumo:
Nell’ambito della patologia gastroenterica del suino sono comprese alcune malattie sostenute da batteri spirillari gram negativi, di cui sono disponibili numerose trattazioni riguardanti, soprattutto, l'aspetto epidemiologico e patogenetico. Per alcuni di questi agenti microbici, e per le relative manifestazioni patologiche, poco si conosce nel cinghiale selvatico, animale correlato filogeneticamente al suino domestico, ma compreso in un’ecologia completamente differente. Da queste premesse è nato un approccio di ricerca e studio del comportamento di questi microrganismi in una metapopolazione di cinghiali, abbattuti durante il piano di controllo della popolazione densità-dipendente nel Parco dei Gessi e Calanchi dell’Abbadessa (BO), cercando di rapportare le conoscenze riportate in letteratura sul suino domestico con quanto è scaturito dalle indagini condotte sul cinghiale selvatico. In particolare è stata indagata con metodica immunoistochimica la presenza di Lawsonia intracellularis, patogeno del suino responsabile di Enterite Proliferativa (EP), in secondo luogo sono state condotte indagini batteriologiche e istologiche da stomaco e intestino, finalizzate all’isolamento di microrganismi spirillari dei generi Campylobacter e Helicobacter, da correlare all’eventuale presenza di lesioni infiammatorie e ulcerative gastriche o enteriche valutate secondo sistemi a punteggio ottenuti dalla bibliografia o realizzati in base alla tipologia di infiltrato cellulare e alla sua localizzazione. In ultimo, a fini comparativi con uno studio condotto nel 2002-2004 nello steso Parco Regionale, sono stati monitorati i livelli di antibioticoresistenza di indicatori fecali usando metodiche internazionali standardizzate (Escherichia coli e Enterococcus faecium.) nonché su un numero significativo di isolati di Campylobacter lanienae, per ottenere indicazioni preliminari sull’andamento nei 10 anni trascorsi dello stato di inquinamento da farmaco del Parco stesso. I risultati ottenuti permettono di ampliare le conoscenze sulla flora enterica del cinghiale selvatico e pongono questioni di sicurezza pubblica sulla gestione dei mammiferi selvatici.
Resumo:
During the last twenty years, Cydia pomonolla granulovirus (CpGV, Baculoviridae) has become the most important biological control agent for the codling moth (CM) in organic and integrated apple production. All registered products in Europe are based on the isolate CpGV-M, which was discovered 1964 in Mexico. A serious threat to future application of CpGV is the occurrence of CM field populations resistant to CpGV. Since 2003, populations with up to 10,000-fold reduced susceptibility were reported from orchards in Germany, France, Italy, Switzerland, Austria and the Netherlands. A putative alternative to CpGV-M are novel CpGV isolates which are able to overcome CM resistance. This thesis focuses on the identification and characterisation of resistance overcoming CpGV isolates and the analysis of their molecular difference to CpGV-M.rnSixteen CpGV isolates were tested against CM lab strains in bioassays. Hereby, five isolates were identified which were able to completely overcome resistance. The genomes of these isolates were compared to CpGV-M by restriction fragment length polymorphism (RFLP) analysis. To identify the molecular factor responsible for improved virulence of some CpGV isolates, major genomic differences were sequenced and analysed. A 0.7 kb insertion was found in CpGV-I01, -I12 and -E2, but not in other resistance overcoming isolates. Analysis of the insertions sequence revealed that it might be due to a transposition event, but not involved in overcoming resistance. rnFor unequivocal identification of CpGV isolates, a new method based on molecular analysis was established. Partial sequencing of the conserved polyhedrin/granulin (polh/gran), late expression factor-8 (lef-8) and late expression factor-9 (lef-9) genes revealed single nucleotide polymorphisms (SNPs). SNP analysis correlated with the grouping obtained by RFLP analysis. A phylogenetic classification due to different genome types A-E is proposed. Phylogenetic analysis suggested that CpGV-M was the phylogenetically youngest of the tested CpGV isolates.rnWhole genome sequencing of two resistance overcoming isolates CpGV-I12 (type D genome) and -S (type E genome) and CpGV-M (type A genome) was performed. Comparison of the three genomes revealed a high sequence identity. Several insertions and deletions ranging from 1-700 nucleotides (nt) were found. Comparison on open reading frame (ORF) level revealed that CpGV-I12 and -S shared only one protein alteration when compared to CpGV-M: a stretch of 24 nt present in ORF cp24 was not found in any of the resistance overcoming isolates. Cp24 codes for the early gene pe38. Combined with the results of phylogenetic analysis, it is proposed that these 24 nt are a recent insertion into the CpGV-M genome. The role of pe38 in overcoming resistance was investigated by knocking out pe38 of a CpGV-M based bacmid and swapping of CpGV-I12 pe38 of into the k.o. bacmid. When pe38 of CpGV-I12 was inserted into the k.o. bacmid, the infectivity could not be rescued, suggesting that the genomic portion of pe38 might play a role in its function.rnIt can be concluded that the recently observed CpGV resistance in CM is only related to type A genomes. RFLP and SNP analysis provide tools for identifying and characterising different CpGV isolates reliably, a pre-condition for a future registration of CpGV products based on novel CpGV isolates.rnrnrn
Resumo:
The lack of effective tools have hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 X 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
The lack of effective tools has hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical frame work that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 x 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets maybe common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasions are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
The protozoan parasite Toxoplasma gondii infects almost all warm blooded animal species including humans, and is one of the most prevalent zoonotic parasites worldwide. Post-natal infection in humans is acquired through oral uptake of sporulated T. gondii oocysts or by ingestion of parasite tissue cysts upon consumption of raw or undercooked meat. This study was undertaken to determine the prevalence of oocyst-shedding by cats and to assess the level of infection with T. gondii in meat-producing animals in Switzerland via detection of genomic DNA (gDNA) in muscle samples. In total, 252 cats (44 stray cats, 171 pet cats, 37 cats with gastrointestinal disorders) were analysed coproscopically, and subsequently species-specific identification of T. gondii oocysts was achieved by Polymerase Chain Reaction (PCR). Furthermore, diaphragm samples of 270 domestic pigs (120 adults, 50 finishing, and 100 free-range animals), 150 wild boar, 250 sheep (150 adults and 100 lambs) and 406 cattle (47 calves, 129 heifers, 100 bulls, and 130 adult cows) were investigated by T. gondii-specific real-time PCR. For the first time in Switzerland, PCR-positive samples were subsequently genotyped using nine PCR-restriction fragment length polymorphism (PCR-RFLP) loci (SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) for analysis. Only one of the cats shed T. gondii oocysts, corresponding to a T. gondii prevalence of 0.4% (95% CI: 0.0-2.2%). In meat-producing animals, gDNA prevalence was lowest in wild boar (0.7%; 95% CI: 0.0-3.7%), followed by sheep (2.0%; 95% CI: 0.1-4.6%) and pigs (2.2%; 95% CI: 0.8-4.8%). The highest prevalence was found in cattle (4.7%; 95% CI: 2.8-7.2%), mainly due to the high prevalence of 29.8% in young calves. With regard to housing conditions, conventional fattening pigs and free-range pigs surprisingly exhibited the same prevalence (2.0%; 95% CI: 0.2-7.0%). Genotyping of oocysts shed by the cat showed T. gondii with clonal Type II alleles and the Apico I allele. T. gondii with clonal Type II alleles were also predominantly observed in sheep, while T. gondii with mixed or atypical allele combinations were very rare in sheep. In pigs and cattle however, genotyping of T. gondii was often incomplete. These findings suggested that cattle in Switzerland might be infected with Toxoplasma of the clonal Types I or III, atypical T. gondii or more than one clonal Type.
Resumo:
A 10-year-old male, neutered domestic shorthair cat was presented with fever, anorexia, vomiting, and diarrhea. Serologic testing for Feline immunodeficiency virus and Feline leukemia virus were negative. Fine-needle aspirates of mesenteric lymph nodes revealed the presence of banana-shaped apicomplexan parasites. The cat died after 4 days of hospitalization. Postmortem polymerase chain reaction (PCR) analysis confirmed the presence of Toxoplasma gondii in all examined organs. Parasites were ex vivo isolated in outbred mice and subsequently transferred into cell culture. Genotyping, using genetic markers for SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico for PCR-restriction fragment length polymorphism, revealed infection with type II T. gondii displaying type II alleles at all loci except Apico, which exhibited a type I allele. This is the most frequently identified genotype among cats acting as definitive hosts in central Europe, but to the authors' knowledge, it has never been associated with systemic toxoplasmosis in an adult, immunocompetent cat.
Resumo:
OBJECTIVES: The aim of this study was to determine the phenotypic and genotypic resistance profiles of methicillin-resistant Staphylococcus pseudintermedius (MRSP) and to examine the clonal distribution in Europe and North America. METHODS: A total of 103 MRSP isolates from dogs isolated from several countries in Europe, the USA and Canada were characterized. Isolates were identified by PCR-restriction fragment length polymorphism (RFLP), antimicrobial susceptibility was determined by broth dilution or gradient diffusion, and antimicrobial resistance genes were detected using a microarray. Genetic diversity was assessed by multilocus sequence typing (MLST), PFGE and spa typing. Staphylococcal cassette chromosome mec (SCCmec) elements were characterized by multiplex PCR. RESULTS: Thirteen different sequence types (STs), 18 PFGE types and 8 spa types were detected. The hybrid SCCmec element II-III described in a MRSP isolate was present in 75 (72.8%) isolates. The remaining isolates either had SCCmec type III (n=2), IV (n=6), V (n=14) or VII-241 (n=4) or were non-typeable (n=2). The most common genotypes were ST71(MLST)-J(PFGE)-t02(spa)-II-III(SCCmec) (56.3%) and ST68-C-t06-V (12.6%). In addition to mecA-mediated beta-lactam resistance, isolates showed resistance to trimethoprim [dfr(G)] (90.3%), gentamicin/kanamycin [aac(6')-Ie-aph(2')-Ia] (88.3%), kanamycin [aph(3')-III] (90.3%), streptomycin [ant(6')-Ia] (90.3%), streptothricin (sat4) (90.3%), macrolides and/or lincosamides [erm(B), lnu(A)] (89.3%), fluoroquinolones (87.4%), tetracycline [tet(M) and/or tet(K)] (69.9%), chloramphenicol (cat(pC221)) (57.3%) and rifampicin (1.9%). CONCLUSIONS: Two major clonal MRSP lineages have disseminated in Europe (ST71-J-t02-II-III) and North America (ST68-C-t06-V). Regardless of their geographical or clonal origin, the isolates displayed resistance to the major classes of antibiotics used in veterinary medicine and thus infections caused by MRSP isolates represent a serious therapeutic challenge.
Resumo:
Chronic alcohol consumption is associated with an increased risk for upper aerodigestive tract cancer and hepatocellular carcinoma. Increased acetaldehyde production via alcohol dehydrogenase (ADH) has been implicated in the pathogenesis. The allele ADH1C*1 of ADH1C encodes for an enzyme with a high capacity to generate acetaldehyde. So far, the association between the ADH1C*1 allele and alcohol-related cancers among heavy drinkers is controversial. ADH1C genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism in a total of 818 patients with alcohol-associated esophageal (n=123), head and neck (n=84) and hepatocellular cancer (n=86) as well as in patients with alcoholic pancreatitis (n=117), alcoholic liver cirrhosis (n=217), combined liver cirrhosis and pancreatitis (n=17) and in alcoholics without gastrointestinal organ damage (n=174). The ADH1C*1 allele and genotype ADH1C*1/1 were significantly more frequent in patients with alcohol-related cancers than that in individuals with nonmalignant alcohol-related organ damage. Using multivariate analysis, ADH1C*1 allele frequency and rate of homozygosity were significantly associated with an increased risk for alcohol-related cancers (p<0.001 in all instances). The odds ratio for genotype ADH1C*1/1 regarding the development of esophageal, hepatocellular and head and neck cancer were 2.93 (CI, 1.84-4.67), 3.56 (CI, 1.33-9.53) and 2.2 (CI, 1.11-4.36), respectively. The data identify genotype ADH1C*1/1 as an independent risk factor for the development of alcohol-associated tumors among heavy drinkers, indicating a genetic predisposition of individuals carrying this genotype.
Resumo:
The genetic diversity of 115 Campylobacter coli strains, isolated from pigs of 59 geographical distant farms in Switzerland, were characterized on the basis of their DNA fingerprints and resistance to macrolides and fluoroquinolones. Sequence analysis showed that the macrolide-resistant isolates had a point mutation in the 23S ribosomal RNA (rRNA) genes (A2075G) and that the fluoroquinolone-resistant isolates had a point mutation in the gyrase gene gyrA (C257T). One fluoroquinolone-resistant strain had an additional transition mutation in the gyrB gene (A1471C). The flaA restriction fragment length polymorphism (RFLP) genotyping revealed that 57% of the isolates were genetically different. Point mutations in the 23S rRNA and gyrA genes could be found in both genetically distant and genetically related isolates. Additionally, isolates with and without point mutations were found within individual farms and on different farms. This study showed that the ciprofloxacin and erythromycin-resistant C. coli population present on the pig farms is not issued from a common ancestral clone, but individual Campylobacter strains have most likely mutated independently to acquire resistances under the selective pressure of an antibiotic.
Resumo:
OBJECTIVE: To determine whether pharmacogenetic tests such as N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genotyping are useful in identifying patients prone to antituberculosis drug-induced hepatotoxicity in a cosmopolite population. METHODS: In a prospective study we genotyped 89 patients treated with isoniazid (INH) for latent tuberculosis. INH-induced hepatitis (INH-H) or elevated liver enzymes including hepatitis (INH-ELE) was diagnosed based on the clinical diagnostic scale (CDS) designed for routine clinical practice. NAT2 genotypes were assessed by fluorescence resonance energy transfer probe after PCR analysis, and CYP2E1 genotypes were determined by PCR with restriction fragment length polymorphism analysis. RESULTS: Twenty-six patients (29%) had INH-ELE, while eight (9%) presented with INH-H leading to INH treatment interruption. We report no significant influence of NAT2 polymorphism, but we did find a significant association between the CYP2E1 *1A/*1A genotype and INH-ELE (OR: 3.4; 95% CI:1.1-12; p = 0.02) and a non significant trend for INH-H (OR: 5.9; 95% CI: 0.69-270; p = 0.13) compared with other CYP2E1 genotypes. This test for predicting INH-ELE had a positive predictive value (PPV) of 39% (95% CI: 26-54%) and a negative predictive value (NPV) of 84% (95% CI: 69-94%). CONCLUSION: The genotyping of CYP2E1 polymorphisms may be a useful predictive tool in the common setting of a highly heterogeneous population for predicting isoniazid-induced hepatic toxicity. Larger prospective randomized trials are needed to confirm these results.
Resumo:
Because of the current controversy on the origin and clinical value of circulating KRAS codon 12 mutations in lung cancer, we screened 180 patients using a combined restriction fragment-length polymorphism and polymerase chain reaction (RFLP-PCR) assay. We detected KRAS mutations in 9% plasma samples and 0% matched lymphocytes. Plasma KRAS mutations correlated significantly with poor prognosis. We validated the positive results in a second laboratory by DNA sequencing and found matching codon 12 sequences in blood and tumor in 78% evaluable cases. These results support the notion that circulating KRAS mutations originate from tumors and are prognostically relevant in lung cancer.