769 resultados para Aluminum-uranium alloys
Resumo:
A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The completeness of beta-phase decomposition reaction in the Cu-11wt%Al-xwt%Ag alloys (x = 0, 1, 2, and 3) was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and optical microscopy (OM). The results indicated that beta-phase transformations are highly dependent on cooling rate and on the presence of Ag. on slow cooling, the silver presence prevents the beta- and beta(1)-phase decomposition; thus, inducing the martensitic phase formation. After rapid cooling, a new thermal event is observed and the reverse martensitic transformation is shifted to lower temperatures.
Resumo:
The Southwest region of the Bahia state in Brazil hosts the largest uranium reserve of the country (100 kton in uranium, only), plus the cities of Caetite, Lagoa Real and Igapora. In this work, aim was at the investigation of uranium burdens on residents of these cities by using teeth as bioindicators, as a contribution for possible radiation protection measures. Thus, a total of 41 human teeth were collected, plus 50 from an allegedly uranium free area (the control region). Concentrations of uranium in teeth from residents of 5- to 87-y old were determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). The highest uranium concentration in teeth was measured from samples belonging to residents of Caetite (median equal to 16 ppb). Assuming that the uranium concentrations in teeth and bones are similar within 10-20% (for children and young adults), it concluded that uranium body levels in residents of Caetite are at least one order of magnitude higher than the worldwide average. This finding led to conclude that daily ingestion of uranium, from food and water, is equally high.
Resumo:
It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Groundwater samples were collected for several months in boreholes drilled at Morro do Ferro, a thorium and rare earth deposit located on the Poços de Caldas Plateau, Minas Gerais State, Brazil. An aquifer system has developed in the weathered mantle due to in situ intense alteration. The weathered zone includes a thick argillaceous laterite greater than 100 m thick. The U content and 324U/238U activity ratio were measured in the groundwater samples and in spoil samples of a borehole drilled in the ore body. Some possible mechanisms related to the mobilization of uranium are considered such as complexation with humic substances and adsorption by clays. © 1989.
Resumo:
The authors studied linear alterations processed on copper-aluminum casten MOD blocks, obtained from two expansion techniques (termic and hygroscopic by immersion). UNITERMS: Investment expansion. Thermic expansion. Hygroscopic expansion. Casten Technique.
Resumo:
It was evaluated the castability of four copper-aluminium alloy according the melting casting method used. The specimens were made using polyester mesh screen, with 11 x 11 filaments of 0.26 mm thick, fixed along of two adjacent edges in wax bar, with the sprue attached at their junction. The alloys were in an electrical casting machine and a centrifugal casting machine with an air/gas torch. The castability values were obtained by the percentage of completed segments of the resulting cast alloy screen. It was verified that the use of the electrical casting machine produced higher castability values to the copper-aluminium alloys than those produced by a centrifugal casting machine with an air/gas torch.
Resumo:
The purpose of this study was to compare the enamel/resin/metal bond tensile strength by using human canines, in which castings were bonded. These castings were obtained by Co-Cr or Ni-Cr alloys and showed four types of mechanisms of retention: 50 micrograms aluminum oxide abrasive, electrochemical etch, acrylic beads metal mesh. The castings were bonded utilizing Comspan Opaque and Panavia Ex. The specimens were subjected to tensile forces after 24 hours in an Instron machine. The castings subjected to 50 micrograms aluminum oxide abrasive and bonded utilizing Panavia EX showed the biggest bond tensile strength.
Resumo:
The present study was designed to evaluate the metallurgical properties of an experimental, low-cost copper-zinc-aluminum-nickel alloy for dental castings. Some specimens were subjected to heat treatment after induction casting. The extent of corrosion was determined by measuring weight loss of specimens stored in a sodium sulfite solution. In the as-cast specimens, tests demonstrated the presence of three phases: the first consisted of copper-zinc-aluminum, the second was similar but lower in copper and aluminum, and the third consisted of an intermetallic compound of manganese-nickel-phosphorus. After heat treatment, the first phase remained relatively constant, the second was converted to Cu3Al, and the third increased in volume. The weight loss from the as-cast specimens was eight times that of the heat-treated specimens. It was concluded that the heat treatment substantially changed the microstructure and improved the corrosion resistance of the experimental alloy.
Resumo:
A bacterial leaching program was carried out in order to evaluate the potential of applying this process to leach uranium from the ore of Figueira-PR, Brazil. The experiments were carried out in shake flasks, column percolation (laboratory and semipilot scale) and in heap leaching. In shake flasks and in column percolation experiments at laboratory scale, bacterial activity on the ore was confirmed: approximately 60% of uranium was leached, against around 30% in sterilized controls. Column percolation experiments at semipilot scale and heap leaching (850 tons of ore) showed uranium extractions of approximately 50%. In both experiments, a complementary sulfuric acid attack, after the bacterial leaching phase, was necessary to reach this level of uranium extraction.
Resumo:
In the last 30 years several studies have been made to understand the relaxation mechanisms of the hydrogen atoms present in transition metals and their alloys. In this work, we observed the stress-induced ordering of hydrogen atoms around the interstitial oxygen atoms near the niobium matrix atoms. We studied this relaxation process by measuring the attenuation of longitudinal ultrasonic waves. These measurements were made in Nb1.0%Zr polycrystalline alloys at 10 and 30 MHz, pure and doped with 0.7 and 4.2 at.% hydrogen. The results revealed a thermally activated relaxation structure around 202 K and 235 K for 10 MHz and 30 MHz respectively. This relaxation structure increases with increasing hydrogen concentration. © 1994.
Resumo:
Thin uranium films built on muscovite mica basis and obsidian samples having known ages were irradiated with thermal neutrons at the IPEN/CNEN reactor, São Paulo. Comparing thin film performance with the obsidian one, it was observed that the latter feel a greater neutron fluence. Nominal fluences at the used facility are in agreement with the results obtained analysing the obsidian samples. A probable hypothesis to explain this disagreement, namely, the uranium loss from the thin films, was ruled out. © 1995.
Resumo:
The dispersion relations along the principal symmetry directions in BCC lithium-sodium alloys are calculated using second-order perturbation theory. The local modified Hoshino-Youngmodel potential was used for the lithium and the local Harrison model potential for sodium. The phonon density of states, the root mean square displacements and (Θ-T) curves are also calculated. In the absence of experimental data, just the theoretical predictions are presented here.
Resumo:
The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.